Liverpool John Moores University

Title: INTRODUCTION TO ENGINEERING THEORY

Status: Definitive

Code: **3000ENG** (105559)

Version Start Date: 01-08-2016

Owning School/Faculty: Electronics and Electrical Engineering Teaching School/Faculty: Electronics and Electrical Engineering

Team	Leader
Rebecca Bartlett	Υ

Academic Credit Total

Level: FHEQ3 Value: 12 Delivered 36

Hours:

Total Private

Learning 120 Study: 84

Hours:

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	24
Tutorial	12

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Test	AS1	In class test (under exam conditions)	50	
Test	AS2	Computer based exercises	50	

Aims

To provide, using a basic knowledge of mathematics and physical science, an introduction to electric circuits and forces

Learning Outcomes

After completing the module the student should be able to:

- 1 Use the basic units of engineering science in the S.I. system to work with vector and scalar quantities
- 2 Apply an understanding of a simple atomic model to electrical and mechanical properties of materials
- 3 Analyze resistive circuits
- 4 Analyse simple systems of forces
- 5 Determine the power and energy used in simple systems

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

In class test	1	2	3	4	5
Computer based exercises	1	2	3	4	5

Outline Syllabus

Scientific notation for large and small numbers.

Units and dimensions: the SI system of primary and derived units

Scalars and vectors Basic atomic theory

Introduction to electric charge

Introduction to electric circuits: definition of electric current; the ampere. Resistance, Ohm's law, electromotive force and potential difference. Series and parallel combinations of resistors. Kirchhoff's laws.

Introduction to forces. Forces acting on bodies, resolution of forces. Resultant forces. Normal force and frictional force. The relationship between mass and weight.

Work done by a force in simple systems.

Energy and power, for example in resistive circuits.

Learning Activities

Full lecture and tutorial programme

Notes

This module introduces the basic principles of engineering science.