Liverpool John Moores University

Title: Engineering and Technology Practice

Status: Definitive

Code: **3001FND** (120961)

Version Start Date: 01-08-2016

Owning School/Faculty: Electronics and Electrical Engineering Teaching School/Faculty: Electronics and Electrical Engineering

Team	Leader
Andy Pettit	Υ
Marco Messina	
Eddie Blanco Davis	
Olga Korostynska	
Lisa Li	
Clifford Mayhew	
Martin Jones	
Colin Wright	
Wei Zhang	
Mahamoud Ahmed	

Academic Credit Total

Level: FHEQ3 Value: 20 Delivered 102

Hours:

Total Private

Learning 200 Study: 98

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	6
Practical	72
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	AS1	Experimental Design & Practice	50	
Practice	AS3	Problem Solving	30	
Report	AS2	Research	20	

Aims

This module aims to develop the practical skills of students by applying what they learn in their mathematics and physics modules. It will provide an experience of experimental planning, execution and report writing, as well as activities aimed at developing problem solving skills. It also embeds the study skills which are required for students to become effective and independent learners.

Learning Outcomes

After completing the module the student should be able to:

- Design an experiment, following the scientific method, in order to systematically explore a physical phenomenon in an engineering science context.
- Write a report on a laboratory exercise which they have planned and executed, including a systematic analysis of the results and any sources of experimental error.
- Research a topic in engineering or technology, and write a properly referenced report on their findings.
- 4 Apply principles of mathematics and science to solve a problem in an engineering and technology context
- Demonstrate that they have the study skills required to be an effective and independent learner in a higher education environment.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Experimental Des &	1	2	5
Practice			
Problem Solving	3	5	
_			
Research	4	5	

Outline Syllabus

The list below provides an indicative list of topics which may be covered in this module:

Study Skills

- Read effectively and identify appropriate resources to study topical engineering problems
- Identify their study needs and plan their study effectively
- Work effectively in a group
- Present information in an appropriate style

Experimental Measurement

- Random and systematic errors in measurements
- Precision, repeatability, resolution and accuracy of measurements
- Uncertainty in measurement
- Representing uncertainty

Experimental Methods

- Report writing
- · Handling experimental data
- · Graphical representation
- Errors
- Analysis of results, and the formulation of conclusions

Experimental Practice

• Complete a series of experiments, keeping a logbook to record notes, measurements and observations.

Learning Activities

Laboratory experiments, tutorials, online tests

Notes

Not applicable