Liverpool John Moores University

Title:	ORGANISATION AND CONTROL IN LIVING SYSTEMS
Status:	Definitive
Code:	3001FNDSCI (101206)
Version Start Date:	01-08-2011
Owning School/Faculty: Teaching School/Faculty:	Natural Sciences & Psychology Natural Sciences & Psychology

Team	emplid	Leader
Jennifer Sneddon		Y
Denise Phillip		

Academic Level:	FHEQ3	Credit Value:	12.00	Total Delivered Hours:	36.00
Total Learning Hours:	120	Private Study:	84		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	12.000
Practical	12.000
Workshop	12.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Test	Phase test	phase tests	60.0	
Presentation	Poster	poster	40.0	

Aims

To illustrate the major biochemical and genetic systems that control living organisms at the cellular level.

Learning Outcomes

After completing the module the student should be able to:

- 1 recount the metabolic pathways involved in respiration and photosynthesis
- 2 review the structure and function of enzymes as they operate in cellular biochemistry
- 3 explain the relationship between DNA structure and macro-variation in living organisms
- 4 practice experimental techniques and use appropriate analytical methods

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Phase tests	2	4
Poster	1	3

Outline Syllabus

Protein structure, enzyme structure and function. Enzymes and activation energy. The regulation of enzyme function.

ATP and cellular energetics, ATP and cellular work, regeneration of ATP and the ATP cycle.

Oxidative metabolism.

Cellular respiration, glycolysis, Kreb's cycle, electron transfer, oxidation and reduction, the role of terminal oxidases.

Photosynthesis. Light absorption by chlorophyll, the 'Z' scheme and chemiosmosis, the Calvin cycle. Variations in photosynthetic processes as a result of environmental factors.

Cells, structure and function, The role of cell organelles including mitochondria and chloroplasts.

The development of tissues and organs. A review of some simple tissues to show cell specialisation for function.

The concept of organs as combinations of tissues developed for complex functions DNA Structure, protein synthesis, genes, alleles, meiosis and mitosis, monohybrid and dihybrid crosses. Variation selection and evolution.

Learning Activities

The module will be delivered using a combination of lectures, workshops and practicals.

References

Course Material	Book
Author	Sadava, Heller, Orians, Purves, Hillis

Publishing Year	2008
Title	Life: The science of Biology
Subtitle	
Edition	8th
Publisher	W H Freeman
ISBN	0716776715

Course Material	Book
Author	Raven, Johnson
Publishing Year	2002
Title	Biology
Subtitle	
Edition	6th
Publisher	McGraw Hill
ISBN	0-07-112261-3

Notes

This module provides students with a background in cellular genetics and biochemistry. Key skills developed will include experimental, report writing and data analysis.