Liverpool John Moores University

Title:	Foundation Physics - Mechanics, Materials and Waves
Status:	Definitive faculty appr change
Code:	3004FND (120964)
Version Start Date:	01-08-2016
Owning School/Faculty: Teaching School/Faculty:	General Engineering Research Institute General Engineering Research Institute

Team	Leader
Martin Sharp	Y
Paul French	

Academic Level:	FHEQ3	Credit Value:	20	Total Delivered Hours:	74
Total Learning Hours:	200	Private Study:	126		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	48
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Exam	AS1	End of year examination	70	2
Test	AS2	Mid-semester 1 in-class test	15	1
Test	AS3	Mid-semester 2 in-class test	15	1

Aims

The aim of this module is to provide students who may not have studied A-level physics with the prerequisite knowledge regarding mechanics, materials and waves which is required to go on to study for an engineering or technology degree.

Learning Outcomes

After completing the module the student should be able to:

- 1 Apply their knowledge of force, energy and momentum to analyse the behaviour of simple mechanical systems
- 2 Demonstrate an understanding of the properties of Materials, and apply the equations that describe their characteristics.
- 3 Describe the general properties of longitudinal and transverse waves in different media, and apply the governing equations to simple applications.
- 4 Demonstrate an understanding of thermodynamics, and the thermal properties of a simple system. Derive and apply equations which govern these principles.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

End of year examination	1	2	3	4
In-class test	1	2		
In-class test	3	4		

Outline Syllabus

The list below provides an indicative list of topics which may be covered in this module:

Essential Knowledge

- Base units
- SI Units
- Prefixes describing size or quantity
- Converting between equivalent units
- Scalar and vector quantities
- Conditions for equilibrium

Force, Energy and Momentum

- Newton's laws of motion
- Forces and moments
- Motion in a straight line
- Motion of a projectile
- Circular motion
- Simple harmonic motion
- Momentum
- Work, energy and power

Materials

• Properties of solid materials

- Hooke's law
- Young's Modulus
- Elasticity, plasticity and fracture Waves
- Longitudinal and transverse waves
- Progressive and stationary waves
- Refraction and diffraction
- Coherence, interference, superposition and phase

Thermodynamics

- Thermodynamic laws
- Internal energy and enthalpy
- Absolute zero and the Kelvin scale
- Heat transfer mechanisms
- Changes of state
- Heat capacity
- Ideal gasses
- Boyle's law and Charles's law
- Molar mass and molecular mass
- Brownian motion

Learning Activities

Lectures and tutorials

Notes

It is important to recognise that the curriculum contained in this module relies upon a minimum level of competence in a number of areas of mathematics.

This module is complemented by the Engineering and Technology Practice module where topics contained within this syllabus are explored and contextualised further through practical and experimental inquiry.