Liverpool John Moores University

Title: Programming Status: Definitive

Code: **3206FNDET** (127955)

Version Start Date: 01-08-2021

Owning School/Faculty: Computer Science and Mathematics Teaching School/Faculty: Computer Science and Mathematics

Team	Leader
Andrew Symons	Υ
Kirsty Lever	

Academic Credit Total

Level: FHEQ3 Value: 10 Delivered 33

Hours:

Total Private

Learning 100 **Study**: 67

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	22	
Practical	11	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	AS1	Programming Tasks	100	

Aims

- To introduce the student to the software development process.
- To become conversant with a range of computer programming environment and their applications.
- To develop problem solving skills in computing and wider engineering or technology areas.

Learning Outcomes

After completing the module the student should be able to:

- 1 Apply knowledge of programming constructs and basic algorithms.
- 2 Demonstrate problem solving skills by producing simple programming solutions.
- 3 Evaluate alternatives and make sound judgements regarding programming solutions.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Programming Tasks 1 2 3

Outline Syllabus

Programming Overview & History The Language & IDE Basic Elements Procedural Programming Setting up a programming environment Scripting Fundamentals Producing a script Formatting a script Variables Data types Input to scripts Programming arithmetic Mathematical operators Division, floors and truncation Program Control Selection Statements Loop Constructs

Learning Activities

Student-focused learning activities based on a combination of lectures and classroom activities with practical, experiential learning in laboratories designed to reinforce and increase the student learning experience.

Notes

This module introduces the student to the fundamental concepts of programming and their practical application.