Liverpool John Moores University

Title: INTRODUCTION TO COMPUTER PROGRAMMING

Status: Definitive

Code: **4000ESE** (120620)

Version Start Date: 01-08-2016

Owning School/Faculty: Computer Science Teaching School/Faculty: Computer Science

Team	Leader
Robert Askwith	Υ
Michael Mackay	
Chris Carter	
Faycal Bouhafs	
David Llewellyn-Jones	
Paul Fergus	

Academic Credit Total

Level: FHEQ4 Value: 20 Delivered 72

Hours:

Total Private

Learning 200 Study: 128

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	24	
Practical	48	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Technology	AS1	Series of programming lab tasks	40	
Artefacts	AS2	Development of a piece of software	60	

Aims

To develop IT problem solving skills

To become familiar with a range of computer programming techniques
To gain an understanding of how software is developed
To prepare students for software development at higher levels, both work and study

Learning Outcomes

After completing the module the student should be able to:

- 1 Apply knowledge of computer programming constructs and algorithms to IT problems
- 2 Demonstrate problem solving skills to create simple software solutions.
- 3 Evaluate alternatives and make sound judgements about data structures
- Investigate development environment tools & libraries for use in software development
- 5 Demonstrate knowledge of the Object-Oriented Programming paradigm

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Series of programming 1 2

tasks

Software development 3 4 5

Outline Syllabus

Computers and Computer Programming

- -How programs work within computers
- -Current programming languages and their evolution
- -Programming cycle
- -Interpreted, managed and native code
- -Overview of methodologies: Structured / Imperative, Functional and OO
- -Strong / Weak Typing

IDE

- -Working with code
- -Compiling, profiling, testing and organising code

Basic elements of programs

- -Syntax
- -Variables/Types
- -Expressions
- -Input/Output and Devices
- -Classes and methods

Control structures

- -Conditionals / selection
- -Loops / repetition
- -Break / return

Algorithms

- -Logical problem solving
- -User defined classes/ADTs
- -Value and Reference Types
- -Arrays / Collections
- -String manipulation
- -Code structure, procedures/methods, callbacks.
- -Recursion

Libraries and useful library functions.

- -Standard libraries
- -External APIs

User interfaces

- -Events, widgets.
- -Graphics: canvases and visual input/output.

Object-oriented constructs

- -Static and Instance Classes
- -Encapsulation
- -Composition
- -Inheritance
- -Templates / Generics
- -Polymorphism
- -Exceptions

Learning Activities

Lectures – to introduce the programming theories and techniques
Lab exercises – programs for students to write and test
Further exercises – practical examples for students to work on in their own time
Directed reading – background reading to enable the lab work to be completed

Notes

This module aims to develop programming and problem solving skills in students to help prepare them for both the further study of software development and for work in an IT environment.