Liverpool John Moores University

Title: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Status: Definitive

Code: **4002ONLINE** (103087)

Version Start Date: 01-08-2011

Owning School/Faculty: Computing and Mathematical Sciences Teaching School/Faculty: Computing and Mathematical Sciences

Team	emplid	Leader
Thomas Berry		Υ

Academic Credit Total

Level: FHEQ4 Value: 24.00 Delivered 74.00

Hours:

Total Private

Learning 240 Study: 166

Hours:

Delivery Options

Course typically offered: Runs Twice - S1 & S2

Component	Contact Hours
Lecture	24.000
Online	24.000
Practical	12.000
Tutorial	12.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Students will design and construct a logic circuit to solve a problem.	25.0	
Exam	AS2	Examination.	75.0	2.00

Aims

The aim of the module is to enable students to gain a detailed view of computer architecture at the hardware and software level and basic security concepts.

Learning Outcomes

After completing the module the student should be able to:

- 1 Apply the various numbers bases applicable to computing and the application of binary addition and subtraction.
- Discuss the operation and design of logic gates and analyse their use in synchronous and asynchronous circuits. Use Boolean algebra in representing logic circuits.
- 3 Define the differences between different memory devices, expansion bus architectures, storage devices and Input/Output devices.
- 4 Demonstrate an understanding of the threats and vulnerabilities to information and computer systems.
- Define how different operating systems work and be able to compare them. This will include process description and scheduling of processes.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Logic circuit 2

Examination 1 3 4 5

Outline Syllabus

Number bases such as binary, hex and decimal and how to convert numbers between bases. The methods used to perform mathematical operations within these number bases.

The various levels of abstraction of the Data Hierarchy, i.e. from bit level, through bytes and ASCII.

The use of Boolean algebra to form equations that describe logic circuits and the basic techniques used to manipulate Boolean equations.

Design and Construction of Logic circuits, both synchronous and asynchronous, including encoders, decoders and adders.

A detailed view of memory devices such as: ROM, DRAM, SRAM, etc.

The differences between Expansion bus architectures.

Hard drive standards such as IDE and SATA.

Peripheral devices used for input and output.

Operating systems.

Introduction to computer security and a review of the common security problems.

Learning Activities

The module consists of recorded lectures, which will cover areas listed under Outline Syllabus. Tutorials will follow these lectures with the tutorial activities covering the topic covered in the preceding lecture. Tutorials will be supported by online interactivity which will take place weekly.

References

Course Material	Book
Author	Clements, A.
Publishing Year	2006
Title	The principles of Computer Hardware
Subtitle	
Edition	4th
Publisher	Oxford University Press
ISBN	978-0199273133

Course Material	Book
Author	Williams, R.
Publishing Year	2006
Title	Computer Systems Architecture
Subtitle	A networking Approach
Edition	2nd
Publisher	Prentice-Hall
ISBN	9780321340795

Course Material	Book
Author	Tanenbaum, A.S.
Publishing Year	2007
Title	Modern Operating Systems
Subtitle	
Edition	3rd
Publisher	Prentice-Hall
ISBN	9780136006633

Course Material	Book
Author	Pfleeger, C.P. & Pfleeger, S.
Publishing Year	2006
Title	Security in Computing
Subtitle	
Edition	4th
Publisher	Prentice-Hall
ISBN	9780132390774

Notes

This module provides an overview of hardware, software and systems study of representative modern computer systems. This also includes an introduction to computer security. All online activities are scheduled.