Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title: THERMODYNAMICS & FLUID MECHANICS

Status: Definitive

Code: **4006ENGFRI** (117044)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Geraint Phylip-Jones	Υ
Russell English	

Academic Credit Total

Level: FHEQ4 Value: 10 Delivered 26

Hours:

Total Private

Learning 100 Study: 74

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours		
Lecture	18		
Tutorial	6		

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam		50	2
Essay	Essay		25	
Essay	Essay		25	

Aims

To introduce the student to the fundamental concepts of Thermodynamics and Fluid Mechanics and their application to engineering problems.

Learning Outcomes

After completing the module the student should be able to:

- 1 Examine thermodynamic processes involving ideal gases in closed and open systems and calculate work and heat transfers
- 2 Use property tables and charts for vapours
- 3 Solve problems in hydrostatics
- 4 Solve problems in ideal steady fluid flows

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam 1 2 3 4
Essay 1 1 2
Essay 2 3 4

Outline Syllabus

Thermodynamic definitions
The First Law of Thermodynamics
Non-Flow and Steady Flow Energy Equation
Properties of Gases.
Non-Flow processes and Steady Flow processes for gases.
Properties of Fluids
Hydrostatic Equation
Manometry
Continuity, Bernoulli and Momentum equations
Hydrostatic forces.

Learning Activities

Combination of lectures, tutorials and laboratories

Notes

This module is designed to provide an introduction to the subjects of Thermodynamics, Fluid Mechanics and Heat Transfer.