Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title:	Biomolecular Science for Forensic scientists
Status:	Definitive
Code:	4006FSBMOL (120095)
Version Start Date:	01-08-2016
Owning School/Faculty:	Pharmacy & Biomolecular Sciences
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences

Team	Leader
Jari Louhelainen	Y
Laura Randle	
Helen Burrell	
Janice Harland	
Suzzanne McColl	
George Sharples	

Academic Level:	FHEQ4	Credit Value:	24	Total Delivered Hours:	62
Total Learning Hours:	240	Private Study:	178		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	41
Practical	18
Workshop	2

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	exam	Final module exam	50	1
Test	Ass2	Practical test	25	3
Report	Ass 3	Practical report	25	

Aims

To introduce biomolecular science to forensic science students providing the building blocks for further study in this area.

Learning Outcomes

After completing the module the student should be able to:

- 1 Demonstrate knowledge of tissue and cell structure, cellular processes and biomolecules.
- 2 Perform a number of biochemical and cellular procedures
- 3 Report experimental findings appropriately

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Final module exam	1	
Practical test	2	3
Practical report	2	3

Outline Syllabus

Proteins - Structure and function including enzymes, regulation and control. Interaction with toxic substances and with degradation/ decomposition. Cell structure and function including general classifications. Cytoskeleton, mitochondria, lysosomes and peroxisomes - other organelles. Cell cycle. Structure and function of skin.

Membrane structure, transportation, receptor/ hormones DNA- structure and function both eukaryote and prokaryote. DNA folding and packaging, DNA replication, transcription/translation including promoters Histology - basic stains and use in forensic pathology, epithelial tissues, brain, blood, bone, muscle and connective tissue. Changes in tissues following death for example

bone, muscle and connective tissue. Changes in tissues following death for example rigor mortis.

Genetics- inheritance patterns, ploidy, chromosome structure and changes/ mutation, Hardy Weinberg equilibrium. Introduction to DNA profiling. Metabolism- Understanding of anabolism and catabolism, glycolysis, Krebs cycle, electron transport chain. Metabolism and detoxification Basic microbiology - Introduction to microbiology as it relates to forensic science

Learning Activities

lectures, problem based learning workshops, practical classes, self-study

Notes

To introduce forensic science students to appropriate biomolecular information