Liverpool John Moores University

Title:	GENETICS FOR BEHAVIOUR AND CONSERVATION
Status:	Definitive
Code:	4006NATSCI (120880)
Version Start Date:	01-08-2015
Owning School/Faculty:	Natural Sciences & Psychology
Teaching School/Faculty:	Natural Sciences & Psychology

Team	Leader
Will Swaney	Y
Craig Wilding	
Robbie Rae	
Carlo Meloro	
Sarah Dalrymple	
Elaine Hemers	
Richard Brown	
Clare Milsom	

Academic Level:	FHEQ4	Credit Value:	24.00	Total Delivered Hours:	62.50
Total Learning Hours:	240	Private Study:	177		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	34.000
Practical	20.000
Workshop	7.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	EXAM	MCQs	50.0	1.50
Test	PT	Phase test	50.0	1.00

Aims

To examine the fundamental processes that govern life and evolution, with a focus on the role of genetics in animal behaviour, and how genetics informs conservation.

Learning Outcomes

After completing the module the student should be able to:

- 1 Explain the mechanisms of inheritance in eukaryotes
- 2 Explain the processes that drive genetic and species diversity
- 3 Discuss the primary features of the evolution of life
- 4 Discuss the role that genetics plays in behaviour among wild and domesticated animals
- 5 Evaluate how genetics influences conservation

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam	1	2	3	4	5
Phase test	1	2			

Outline Syllabus

Essentials of cell biology and biochemistry; principles of genetics; genotype and phenotype; DNA and chromosomes; mitosis and meiosis; inheritance and evolution; speciation; population genetics; behavioural genetics; genetics of domestication; artificial selection; conservation genetics; systematics; phylogenetics; major living and fossil groups; metazoan evolution; vertebrate origins; macroevolution

Learning Activities

This module is delivered through a combination of lectures, practicals and workshops.

Notes

This module provides an introduction to the fundamentals of genetics and evolution, with a focus on the genetics of animal behaviour and of conservation.