Liverpool John Moores University

Title:	PROBLEM SOLVING FOR INFORMATION SYSTEMS
Status:	Definitive
Code:	4013DACOMP (125351)
Version Start Date:	01-08-2021
Owning School/Faculty:	Computer Science and Mathematics
Teaching School/Faculty:	Computer Science and Mathematics

Team	Leader
Abir Hussain	Y
Mark Allen	
Denis Reilly	

Academic Level:	FHEQ4	Credit Value:	20	Total Delivered Hours:	55
Total Learning Hours:	200	Private Study:	145		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	11
Practical	44

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Design Model	40	
Technology	AS2	Software Implementation	60	

Aims

To develop skills in computational thinking that can be used to develop programs to solve subject specific problems

Learning Outcomes

After completing the module the student should be able to:

- 1 Use computational thinking to design solutions to problems
- 2 Implement design solutions in a suitable programming language
- 3 Develop test plans

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Design Model 1

Software Implementation 2 3

Outline Syllabus

Computational thinking – decomposition, pattern recognition, abstraction, algorithms Top-down design/successive refinement Pseudo-code and diagram techniques Practical exercises using compound control structure Practical exercises using methods/functions Solving problems with classes/objects Practical exercises using classes/objects Practical exercises on error handling Testing – test data, test cases, test plans, test strategies (unit, system) Practical exercises on testing

Learning Activities

Learning will largely be based on practical exercises and problem solving activities. Lectures will be used to introduce topics, which will be reinforced through practical work.

This module will have online practical.

Notes

The practical exercises will be related such that they lead to the development of a larger software implementation.