Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title: CIVIL ENGINEERING SURVEYING 1

Status: Definitive

Code: **4021BEUG** (102743)

Version Start Date: 01-08-2016

Owning School/Faculty: Astrophysics Research Institute Teaching School/Faculty: Astrophysics Research Institute

Team	Leader
Nick Eden	Y

Academic Credit Total

Level: FHEQ4 Value: 12 Delivered 62

Hours:

Total Private

Learning 120 Study: 58

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	24	
Practical	24	
Tutorial	12	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	unseen	70	2
Report	AS2	practical assignment	30	

Aims

To introduce basic techniques for land surveying and setting out: methods of obtaining orientation, the subsequent field measurements for the purpose of producing site drawings and hence the calculation of land areas and earthwork volumes, setting out points using line-of-sight and satellite techniques.

Learning Outcomes

After completing the module the student should be able to:

- Identify standard scales used on Ordnance Survey (OS) and other topographical maps and plans, and the coordinate systems used for such plans including the OS National Grid (NG).
- 2 Use a range of theodolites, levels, tapes and electronic distance meters (EDM's) to measure vertical and horizontal angles, and vertical, horizontal and slope distances.
- Work and communicate effectively and in a safe manner in a survey team.
- 4 Use measured values to produce plans and compute and draw contours, longitudinal and cross sections, and to evaluate areas of land and volumes of earthworks.
- 5 Extract positional survey information from a drawing or map and set out and control on site the features indicated by such information.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM 4 5

REPORT 1 2 3 4

Outline Syllabus

Orientation: The use of the Reference Object (RO) and orientation to the National Grid system of the Ordnance Survey and other coordinate systems. Standard maps and plans, scales and symbols.

5

Safety and Risk Assessment in surveying operations.

Vertical Control (OBMs): Set up, use and adjustment of the level. Ordnance Bench Marks and leveling techniques. Accuracy checks.

Horizontal Control: Set up, use and adjustment of the theodolite and Total Station. Theodolite traverses and their adjustment.

Introduction to Global Navigational Satellite Systems.

Setting out: Field positioning of points and lines using the Total Station.

Applications: Computation and drawing of contours, longitudinal sections and cross sections. Determination of areas of land and volumes of earthworks.

Learning Activities

Lectures, computational problems, practical use of surveying instruments in the field, treatment of field data.

Notes

An introduction to basic land surveying techniques. The field measurements required to produce a contoured site plan to a chosen scale, the use of field information to compute land areas and earthworks volumes, and setting out simple features to full scale on site in both line and level.