Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title:	STRUCTURAL ANALYSIS		
Status:	Definitive		
Code:	4022BEHN (102294)		
Version Start Date:	01-08-2016		
Owning School/Faculty:	Astrophysics Research Institute		

Owning School/Faculty:	Astrophysics Research Institute
Teaching School/Faculty:	Astrophysics Research Institute

Team	Leader
Nick Eden	Y

Academic Level:	FHEQ4	Credit Value:	12	Total Delivered Hours:	50
Total Learning Hours:	120	Private Study:	70		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	24
Practical	12
Tutorial	12

Grading Basis: BTEC

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Unseen examination	70	2
Report	AS2	Assignment	30	

Aims

To equip the students with the necessary analytical tools to enable them to assess structural componants including beams and columns. To produce shear force and bending moment diagrams for statically determinate beams. To assess the bending and shear stresses induced in statically determinate beams by the application of concentrated and uniformly distributed loads. To assess the combined stresses induced in foundation pads under applied loads. To assess stresses induced in columns under load.

Learning Outcomes

After completing the module the student should be able to:

- 1 Calculate bending moments and shear forces for simple structures and draw shear force and bending moment diagrams
- 2 Calculate bending deflections for simple structures.
- 3 Determine the critical load for an elastic column.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3
REPORT	1	2	

Outline Syllabus

Bending Moments and Shear Forces : Analyse cantilevers and simply supported beams under the application of a number of concentrated and uniformly distributed loads.

Bending Deflection: Determine the maximum deflection for cantilevers and simply supported beams of uniform section carrying a point load or a uniformly distributed load. Explore the effect of different materials and beam section on bending deflection in beams.

Elastic Columns: Investigate elastic buckling using Euler's method to determine the critical load for an elastic column. Investigate the concept of effective length.

Learning Activities

Lectures, tutorials, laboratory and computer practicals, problem solving sessions.

Notes

This module introduces the students to the concepts of structural analysis. It forms a basis for the structural design module studied in the second semester.