Liverpool John Moores University

Title: MECHANICAL PRINCIPLES

Status: Definitive

Code: **4023ENG** (105467)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Russell English	Υ

Academic Credit Total

Level: FHEQ4 Value: 12 Delivered 26

Hours:

Total Private

Learning 120 Study: 94

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	16
Practical	2
Tutorial	6

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70	2
Essay	AS2	Computer based assignments (statics)	20	
Essay	AS3	Laboratory report (beam section shape)	10	

Aims

To provide an introduction to the mechanical behaviour of solid bodies under the influence of applied forces

Learning Outcomes

After completing the module the student should be able to:

- 1 employ the concepts of equilibrium to the solution of problems in statics
- 2 calculate the shear force and bending moment distributions in flexurally loaded beams.
- 3 employ the concepts of stress and strain to the solution of engineering problems
- 4 recall the load-deformation relationships for different materials
- 5 calculate the stresses in flexurally loaded beams.
- 6 calculate the stresses in torsionally loaded circular members.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4	5	6
CW	1					
CW	2	3	5			

Outline Syllabus

Equilibrium of force systems, free body diagrams, application to plane pin-jointed frameworks.

Concept of shearing forces and bending moments in flexurally loaded beams. Concept of stress and strain: direct, shear, thermal. Application to components / structures subject to axial, shear and thermal loads.

Load-deformation relationships for different materials

Concept of stress and strain: Application to flexurally loaded beams and torsionally loaded circular sections.

Learning Activities

A series of lectures supported by tutorials and practical laboratory work

Notes

To provide an introduction to the mechanical behaviour of solid bodies under the influence of applied forces.