Liverpool John Moores University

Title:	ELECTRICAL AND ELECTRONIC PRINCIPLES		
Status:	Definitive		
Code:	4023TECH (105415)		
Version Start Date:	01-08-2016		
Owning School/Faculty:	Electronics and Electrical Engineering		
Teaching School/Faculty:	Electronics and Electrical Engineering		

Team	Leader
Wei Zhang	Y

Academic Level:	FHEQ4	Credit Value:	24	Total Delivered Hours:	96
Total Learning Hours:	240	Private Study:	144		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	24
Practical	48
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Essay	AS1	In Class Test	40	
Essay	AS2	Practical Assignment	40	
Essay	AS3	Assignment	20	

Aims

To provide a solid understanding of the concepts upon which electrical & electronics principle are based.

Learning Outcomes

After completing the module the student should be able to:

- 1 Describe and solve basic problems using DC & AC circuit principles
- 2 Measure the properties of simple electrical and electronic circuits
- 3 Describe and analyze circuits containing discrete semiconductor devices
- 4 Describe and analyze circuits containing operational amplifiers
- 5 Identify the operation of standard logic gates
- 6 Design using standard logic gates a combinational logic circuit from a Boolean expression and using Karnaugh maps
- 7 Design synchronous sequential circuits using flip-flops

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

CW	1	2	3	4	5	6	7
CW	1	3	4	6	7		
CW	6	7					

Outline Syllabus

Basic quantities and SI units Ohms law, series & parallel resistors Simple dc circuit analysis Introduction to capacitance & inductance and usage in electrical circuit (descriptive) Review of complex numbers, Impedance of R,C,L components Resonance, power PN junction diodes. Forward and reverse biasing of a PN junction. Diode applications. Zener diodes. Basic transistor operation. Transistor characteristics and operations, (Biasing and DC load line). Transistor applications. Ideal operational amplifiers, Inverting, non-inverting, summing, integrator and differential amplifiers. Boolean notation and truth tables. Gate networks. DeMorgan's theorem. Boolean Algebra. Karnaugh maps. Sequential logic: SR, JK, D and T type flip-flops. Design a simple counter using SR, JK, D, and T type flip flop.

Learning Activities

Lectures, tutorial and practical sessions

Notes

This module provides a fundamental understanding of electrical & electronic principles for level 1 BSc programmes.