Liverpool John Moores University

Title:	ELECTRICAL AND ELECTRONIC PRINCIPLES
Status:	Definitive
Code:	4036ENG (116935)
Version Start Date:	01-08-2016
Owning School/Faculty: Teaching School/Faculty:	Electronics and Electrical Engineering Electronics and Electrical Engineering

Team	Leader
Ronan McMahon	Y
Colin Wright	

Academic Level:	FHEQ4	Credit Value:	20	Total Delivered Hours:	84
Total Learning Hours:	200	Private Study:	116		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	21	
Practical	42	
Tutorial	21	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	Port		100	

Aims

To provide a solid understanding of the concepts upon which electrical & electronic principles are based

Learning Outcomes

After completing the module the student should be able to:

- 1 Describe and solve basic problems using DC & AC circuit principles
- 2 Measure the properties of simple electrical and electronic circuits
- 3 Describe and analyze circuits containing discrete semiconductor devices and operational Amplifiers
- 4 Identify the operation of standard logic gates
- 5 Design a combinational logic circuit using standard logic gates
- 6 Design synchronous sequential circuits using flip-flops

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Portfolio 1 2 3 4 5 6

Outline Syllabus

Basic quantities and SI units Ohms law, series & parallel resistors Simple dc circuit analysis Introduction to capacitance & inductance and usage in electrical circuit (descriptive) Impedance of R,C,L components (descriptive) Power PN junction diodes. Forward and reverse biasing of a PN junction. Diode applications. Basic transistor operation. Transistor characteristics and operations, (Biasing and DC load line). Transistor applications. Ideal operational amplifiers, Inverting, non-inverting, summing. Boolean notation and truth tables. Gate networks. DeMorgan's theorem. Boolean Algebra. Karnaugh maps. Sequential logic: flip-flops.

Learning Activities

Lectures, tutorial and practical sessions

Notes

This module provides a fundamental understanding of electrical & electronic principles for level 4 BSc programmes.