Liverpool John Moores University

Title:	INTRODUCTION TO CELL AND MOLECULAR BIOLOGY	
Status:	Definitive	
Code:	4103BCBMOL (122483)	
Version Start Date:	01-08-2021	
Owning School/Faculty:	Pharmacy & Biomolecular Sciences	
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences	

Team	Leader
Helen Burrell	Y
Giles Watts	
Nick Bryan	
Kehinde Ross	
Helen Smalley	
Khalid Rahman	

Academic Level:	FHEQ4	Credit Value:	20	Total Delivered Hours:	60
Total Learning Hours:	200	Private Study:	140		

Delivery Options Course typically offered: Semester 1

Component	Contact Hours
Lecture	49
Practical	6
Workshop	3

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	ASS2	exam	60	2
Report	ASS1	practical write up	40	

Aims

To provide an introduction to the fields of cell biology (the study of the structure and

function of cells) and molecular biology (the study of the relationships between DNA, RNA and proteins).

Learning Outcomes

After completing the module the student should be able to:

- 1 Describe the relationships between structure, function and communication in cells and tissues.
- 2 Summarise the cellular processes required for DNA, RNA and protein biosynthesis.
- 3 Describe the basis of genetics.
- 4 Use experimental methods to explain key molecules and cellular processes

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

exam	1	2	3
practical write up	4		

Outline Syllabus

1) Cell structure/function: general differences between prokaryotes and eukaryotes (including animal and plant cells), cytoskeleton, lysosomes/peroxisomes/vacuoles, endoplasmic reticulum/Golgi apparatus, mitochondria, cell adhesions/extracellular matrix

2) Cell cycle

3) Membrane structure/function

4) Basic tissues/histology

5) Basic cell signalling and receptors including receptor tyrosine kinase and MAP kinase, JAK/STAT pathways

6) Basic molecular biology: DNA structure/function, histones, prokaryotic and eukaryotic DNA replication, prokaryotic and eukaryotic transcription, translation, operons, post translational modification, DNA repair
7) Basic genetics

Learning Activities

Lectures Practicals Workshops

Notes

This module will enable students to demonstrate basic understanding of cell

structure/function and how cells give rise to functions within tissues. Molecular biology and the relationship of DNA, RNA and proteins will be explained and linked to basic genetics. Students will encounter experimental methods to investigate the relevant areas of cell biology and molecular biology.