Liverpool John Moores University

Title: Nutrition & Exercise Physiology

Status: Definitive

Code: **4108SSLN** (123062)

Version Start Date: 01-08-2021

Owning School/Faculty: Sport and Exercise Sciences Teaching School/Faculty: Sport and Exercise Sciences

Team	Leader
lan Sadler	Y
Elizabeth Mahon	

Academic Credit Total

Level: FHEQ4 Value: 20 Delivered 42

Hours:

Total Private

Learning 200 Study: 158

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	12	
Practical	24	
Workshop	4	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Project Reports (2,500 words)	50	
Exam	AS2	Exam (2hrs)	50	2

Aims

To introduce students to physiology in relation to nutrition and exercise.

Learning Outcomes

After completing the module the student should be able to:

- 1 Use formulae and equations as appropriate to describe scientific processes in physiology
- 2 Interpret the application of physiology to nutritional and exercise status
- 3 Describe the use of physiological assessment in relation to nutrition and exercise
- 4 Discuss how nutrition and exercise affect physiological mechanisms in health and disease

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Report	1	2	3	4
Exam	1	2	3	4

Outline Syllabus

Molecular structure including protein, DNA, and RNA. Calculations in physiology. Integration and regulation of metabolism in relation to nutritional intake and exercise. Cardiovascular system including respiratory control; immune system (i.e. response to nutrition and exercise).

Learning Activities

Lectures and laboratory practical sessions will be the main form of student learning activities, but use of Blackboard with blended learning including quizzes, problem solving will be incorporated. Students will be required to carry out a series of practicals (linked to an overall project) designed to investigate techniques used in the measurement of physiological parameters associated with human nutrition and exercise.

Notes

-