## Module Proforma

Approved, 2022.02

## Summary Information

| Module Code | 4110MATHS |
| :--- | :--- |
| Formal Module Title | Linear Algebra |
| Owning School | Computer Science and Mathematics |
| Career | Undergraduate |
| Credits | 20 |
| Academic level | FHEQ Level 4 |
| Grading Schema | 40 |

## Module Contacts

Module Leader

| Contact Name | Applies to all offerings | Offerings |
| :--- | :--- | :--- |
| Robert Wilkinson | Yes | N/A |

Module Team Member

| Contact Name | Applies to all offerings | Offerings |
| :--- | :--- | :--- |
| Stewart Chidlow | Yes | N/A |

Partner Module Team

## Contact Name

Applies to all offerings
Offerings

## Teaching Responsibility

LJMU Schools involved in Delivery
Computer Science and Mathematics

Learning Methods

| Learning Method Type | Hours |
| :--- | :--- |
| Lecture | 22 |
| Practical | 33 |

## Module Offering(s)

| Offering Code | Location | Start Month | Duration |
| :--- | :--- | :--- | :--- |
| SEP-CTY | CTY | September | 12 Weeks |

## Aims and Outcomes

| Aims | To provide an introduction to Linear Algebra with a view towards solving real-world problems. <br> Complete a Future Focus e-learning task. |
| :--- | :--- |

## Learning Outcomes

After completing the module the student should be able to:

| Code | Description |
| :--- | :--- |
| MLO1 | Use the fundamental notions of linear independence, dimension, linearity of a map and orthogonality in <br> concrete examples and real-world applications. |
| MLO2 | Solve systems of linear equations. Derive the conditions for existence and uniqueness of solutions <br> from the vector space structure defined by a system of linear equations. |
| MLO3 | Characterise properties of matrices/linear maps (e.g., eigenvalues and eigenvectors; orthogonality) <br> and exploit the results of this analysis in real-world applications. |
| MLO4 | Identify and reflect upon the following aspects of self-awareness in respect of personal development <br> and career planning: strength and weaknesses, motivations and values, ability to work with others. |

## Module Content

## Outline Syllabus

Systems of linear equations: Gaussian elimination and the solution space of linear systems.Vector spaces, Subvector spaces and their geometry, Spanning sets.Basis and Dimension of a vector space.Linear maps and matrices. Kernel and image. Invertible matrices and determinants.Eigenvectors and eigenvalues. Characteristic polynomial. Matrix diagonalisation.Scalar products and orthogonality. Orthogonality and linear independence.

## Module Overview

This module provides you with the experience of using pencil-and-paper techniques and mathematical software to solve realistic problems in Linear Algebra.

## Additional Information

This module provides students with the experience of using pencil-and-paper techniques and mathematical software to solve realistic problems in Linear Algebra.

## Assessments

| Assignment Category | Assessment Name | Weight | Exam/Test Length <br> (hours) | Learning <br> Outcome <br> Mapping |
| :--- | :--- | :--- | :--- | :--- |
| Portfolio | Portfolio | 30 | 0 | MLO3, MLO4, <br> MLO1, MLO2 |
| Centralised Exam | Examination | 60 | 2 | MLO3, MLO1, <br> MLO2 |
| Future Focus e-learning <br> task | Future Focus | 10 | 0 | MLO4 |

