
Page 1 of 3

Liverpool John Moores University

Title: Fundamentals of Games Programming

Status: Definitive
Code: 4208COMP (127968)
Version Start Date: 01-08-2021

Owning School/Faculty: Computer Science and Mathematics
Teaching School/Faculty: Computer Science and Mathematics

Team Leader
 Silvester Czanner Y
 Yann Savoye N

Academic
Level: FHEQ4

Credit
Value: 20

Total
Delivered
Hours:

44

Total
Learning
Hours:

200
Private
Study: 156

Delivery Options
Course typically offered: Semester 1

Component Contact Hours
Workshop 44

Grading Basis: 40 %

Assessment Details

Category Short
Description

Description Weighting
(%)

Exam
Duration

 Test AS1 In Class test 40 0
 Artefacts AS2 Design, develop and test and

application to specification
60 0

Aims

To gain experience with IDE tools used to develop, compile, debug and test code
using an appropriate high-level programming
language.
To develop problem solving and programming skills to enable the student to design
solutions to non-trivial problems and implement those solutions in a high-level
language.

Page 2 of 3

To relate software engineering and fundamental programming skills to computer
games development.
To build a foundation for more advanced programming techniques, including object-
oriented design and programming and the use of standard data structures and
algorithms.

Learning Outcomes

After completing the module the student should be able to:

 1 Build simple data models via primitive types and arithmetically/logical manipulate
data to solve a specific simple programming task.

 2 Utilise the fundamental language-level control structures to control program flow.
 3 Evaluate and select appropriate data structures and algorithms from the standard

libraries of a high-level language and apply them in order to solving common
programming problems.

 4 Use software engineering design techniques to decompose an application
specification into a set of data models and algorithmic operations.

 5 Compose user-defined structures and functions to model real-world data and
simple algorithmic processes.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

In Class test 1 2 3

Design, develop and test 4 5

Outline Syllabus

Type Theory:
- Binary encoding (numeric data representation, single and double floating point).
- Representation of non-numeric data (character codes, graphical pattern).
- Variables and primitive data types (numbers, characters, booleans).
- Compound types built from other types (strings, static arrays, functions, references,
pointers).
- Advanced Datatype using structures.
- Goals and limitations of static typing.

Language and Program-Level Constructs:
- Basic syntax and semantics of a higher-level language. (syntax vs. semantics).
- Declaration, expressions and assignments.
- Decision structure and Logical connectives.
- Simple Input/Output including file streaming.
- Conditional and iterative control structures.
- Functions and parameter passing.
- References and Pointers.
- Strategies for choosing the appropriate data structure.

Page 3 of 3

- Simple numerical algorithms (average, min, max over an array).
- Programming using library components and language-level APIs.

Software Development Fundamentals:
- The concept of a specification.
- System design principles.
- Testing fundamentals and test-case generation.
- Simple refactoring.
- Modern programming environments.
- Debugging strategies.
- Program comprehension.
- Program correctness.
- Types of errors (syntax, logic, run-time).
- Eliminating some classes of errors without running the program.
- Documentation, Comments and program style.
- Structured design and object-oriented analysis and design.

Architectural Principles Related to Programming:
- Interpretation vs. compilation to native code.
- Language translation pipeline: (parsing, linking, execution).
- Execution as native code.
- Run-time layout of memory (call-stack, heap, static data).
- Memory management (allocating, de-allocating, and reusing heap memory.
- Automated memory management (garbage collection).

Learning Activities

Workshop – Tutor-led practical session in the computer laboratory to cover both
theories and techniques of programming.
Further exercises – additional exercises for students to work on in their own time.
Directed learning – provides additional reading to enable practical work to be
completed.
Learning materials can be accessed digitally via University Virtual Learning
Environment (VLE).

Notes

In this module, students will develop their high-level programming skills using the
industry standard languages for computer games development. Students will be
introduced to the fundamental concepts of data type creation, utilisation and
specification, programmatic computation, logic and how to control application flow.
Practical experience with a high-level language and its associated ecosystem will
lead to the development of problem solving and decomposition skills in order to solve
real-world development problems using the processes of the software development
lifecycle.

