

Introduction to Electronics and Control

Module Information

2022.01, Approved

Summary Information

Module Code	4264PDE
Formal Module Title	Introduction to Electronics and Control
Owning School	Engineering
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 4
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery	
Engineering	

Learning Methods

Learning Method Type	Hours
Practical	33
Workshop	11

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
JAN-CTY	СТҮ	January	12 Weeks

Aims and Outcomes

Aims	This module introduces the fundamentals of applied mathematics and electronics, both theoretically and through practical application, building circuits in laboratories. You will also learn to write simple code as a tool for engineering. You will work both individually and as part of a group during this module.

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Apply fundamental knowledge of analogue and digital electronics
MLO2	2	Demonstrate knowledge of mathematics and electrical engineering theory to the selection of electronic components
MLO3	3	Create a program to operate embedded intelligent controllers
MLO4	4	Design basic control algorithms and circuits

Module Content

Outline Syllabus	SI Units Ohms law, measurement of voltage, current and resistance.Basic components (Resistors, Capacitors, LED's), Basic Transistor operation (NPN transistors as switches), Operational amplifiers (inverting, non-inverting amplifiers, voltage follower).Logic Gates and Implementation: DeMorgan's Theorems. Combinational logic andBoolean algebra expression from logic diagrams and truth tables. Truth tables from logic diagrams and Boolean expressions. Commutative, associative and distributive properties. K-Map from truth table and Boolean expression.Embedded Controllers: Digital I/O, Analog I/O, PWM, Program design High-level language constructs: variables, conditional statements, loops, string handling, input-output, data structures, functions.
Module Overview	Aims This module introduces the fundamentals of applied mathematics and electronics, both theoretically and through practical application, building circuits in laboratories. You will also learn to write simple code as a tool for engineering. You will work both individually and as part of a group during this module.
	Learning Outcomes After completing the module the student should be able to:
	 Apply fundamental knowledge of analogue and digital electronics. Demonstrate knowledge of mathematics and electrical engineering theory to the selection of electronic components. Create a program to operate embedded intelligent controllers. Design basic control algorithms and circuits.
Additional Information	UN Sustainable Development GoalsThis module includes content that relates to the following UN Sustainable Development Goals:SDG09 – This module introduces students to technology that has the potential to upgrade the technological capabilities of industrial sectors.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Presentation	Interim Presentation & Design	30	0	MLO1, MLO2, MLO4
Presentation	Final demonstration	70	0	MLO2, MLO3, MLO4

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Qian Zhang	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings