Liverpool John Moores University

Title: Microprocessors and Software

Status: Definitive

Code: **4302SBC** (124861)

Version Start Date: 01-08-2021

Owning School/Faculty: Engineering

Teaching School/Faculty: The Sino-British College

Team	Leader
Qian Zhang	Υ
Mahamoud Ahmed	

Academic Credit Total

Level: FHEQ4 Value: 20 Delivered 68

Hours:

Total Private

Learning 200 Study: 132

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	11	
Practical	55	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam	Exam	70	2
Report	AS1	Programming	30	

Aims

Provide an overview of the operation of modern microprocessors/microcontrollers and the mechanisms used to represent and process information. Design and implement applications written in both low level and high level languages.

Learning Outcomes

After completing the module the student should be able to:

- Describe the techniques applied to represent information within a Microprocessor. Describe the instruction set of a computer contrasting RISC and CISC approaches.
- 2 Identify the fundamental components of a Microprocessor. Demonstrate an understanding of the registers that constitute a Microprocessor.
- 3 Describe the role of modern Operating Systems in embedded, mobile, desktop and server environments.
- 4 Specify and design microprocessor applications, then implement them utilising high or low level languages

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam 1 2 4 3

Application design 1 2 4

Outline Syllabus

Binary, HEX, 2s Complement, Number endianness, IEEE 754, ASCII, UNICODE.

Processor core and cache hierarchies, Buses, Memory Organisation, Cache Coherency, Multicore, 80% 20% ratio.

Application Scheduling, Security, Interrupt Handling, Libraries, Communications. Variables, Arrays, Iteration, Selection, Interaction with I/O, Structures, Flow charts.

Learning Activities

Lecture, demonstration and practical activities applying topics discussed.

Notes

This module introduces the fundamentals of Computer architecture and the development of High level software.