Liverpool John Moores University

Title:	Engineering Scier	nce 1
Status:	Definitive	
Code:	4503ENGICA	(119089)
Version Start Date:	01-08-2018	
Owning School/Faculty: Teaching School/Faculty:	Engineering HICOM Univers	sity College Sdn,Bhd

Team	Leader
Russell English	

Academic Level:	FHEQ4	Credit Value:	20	Total Delivered Hours:	76
Total Learning Hours:	200	Private Study:	124		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	44
Practical	8
Tutorial	22

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Practice	AS1		50	
Exam	AS2		50	2

Aims

To introduce the essential principles of engineering science

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse heat and work transfers during thermodynamic processes involving gases in open and closed systems.
- 2 Solve problems in Hydrostatics
- 3 Analyse problems of simple fluid flow.
- 4 Use principles of equilibrium to analyse rigid body and static force systems.
- 5 Apply the concepts of stress and strain to simple engineering problems.
- 6 Apply the principles of kinematics and dynamics to problems of motion.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

PRACTICE	1	2	3	4	5	6
EXAM	1	2	3	4	5	6

Outline Syllabus

Thermodynamic definitions, state, process, path, cycle, temperature, heat and work transfers, intensive, extensive properties.

First Law, NFEE, SFEE, internal energy, enthalpy.

Modeling and properties of perfect gases, real gases.

Fluid Mechanics definitions, pressure, density, viscosity, stream lines and stream tubes etc.

Hydrostatics, manometry, forces of submerged surfaces, buoyancy.

Continuity of flow for compressible and incompressible fluids.

Statics of rigid bodies, static equilibrium, concurrent forces, non-concurrent forces, vector representation of forces, torques and moments.

Kinematics of rigid bodies. Linear and angular motion with uniform acceleration. Graphical representation and interpretation of kinematic data. Application to simple non-linear motion.

Dynamics of rigid bodies. Newton's laws of motion and their application to simple mechanical systems including linear and rotational motion.

Deformation of materials. Concept of stress and strain, direct and shear stress, simple thermal stress, compatibility, stress-strain relationships for simple material types. (Young's Modulus etc) Safety factors and stress concentrations.

Learning Activities

A combination of Laboratories, Tutorials and Lectures.

Course Material	Book
Author	Hannah and Hillier
Publishing Year	1998
Title	Applied Mechanics
Subtitle	
Edition	2nd

Publisher	Longman
ISBN	9780582256323

Course Material	Book
Author	Popov E
Publishing Year	1998
Title	Engineering Mechanics of Solids
Subtitle	
Edition	2nd
Publisher	Prentice Hall
ISBN	9780137261598

Course Material	Book
Author	Douglas, JF; Gasiorek, JM; Swaffield, JA; Jack, LB
Publishing Year	2005
Title	Fluid Mechanics
Subtitle	
Edition	5th
Publisher	Prentice-Hall
ISBN	9780131292932

Course Material	Book
Author	Eastop, TD; McConkey, A
Publishing Year	1993
Title	Applied Thermodynamics for Engineering Technologists
Subtitle	
Edition	5th
Publisher	Longman
ISBN	9780470219829

Notes

This module is designed to provide an introduction to Engineering science which incorporates the subjects of Mechanics, Materials, Thermodynamics and Fluid Mechanics.