## Electrical Circuit Principles <br> Module Information

2022.01, Approved

## Summary Information

| Module Code | 4504EDLBHG |
| :--- | :--- |
| Formal Module Title | Electrical Circuit Principles |
| Owning School | Engineering |
| Career | Undergraduate |
| Credits | 20 |
| Academic level | FHEQ Level 4 |
| Grading Schema | 40 |

## Teaching Responsibility

LJMU Schools involved in Delivery
LJMU Partner Taught

Partner Teaching Institution

## Institution Name

Beaconhouse Group

## Learning Methods

| Learning Method Type | Hours |
| :--- | :--- |
| Online | 55 |

## Module Offering(s)

| Display Name | Location | Start Month | Duration Number Duration Unit |
| :--- | :--- | :--- | :--- |
| SEP-PAR | PAR | September | 12 Weeks |

## Aims and Outcomes

To enhance knowledge and understanding of the essential mathematics underpinning electrical and electronic engineering.To develop intellectual abilities in selecting and applying appropriate circuit analysis techniques for analysing various electrical and electronic circuits.To introduce passive electronic components and understand there operating characteristics. To introduce the operating principles of transformers and electronic filters.

## After completing the module the student should be able to:

## Learning Outcomes

| Code | Number | Description |
| :--- | :--- | :--- |
| MLO1 | 1 | Understand the fundamental relationships governing electric circuits |
| MLO2 | 2 | Use circuit analysis techniques to determine operating points of dc circuits |
| MLO3 | 3 | Derive the power relations in ac circuits and perform calculations |
| MLO4 | 4 | Explain the operating principles of transformers |
| MLO5 | 5 | Apply complex numbers and phasors to solve ac circuits. |

## Module Content

| Outline Syllabus | 1 Passive components, AC circuits and phasorsScientific notation, voltage, current, power and <br> energy. Introduction to electric fields, permittivity, Capacitance, impedance of a <br> capacitor. Introduction to magnetic fields, self and mutual inductance, impedance of an <br> inductor. Operating principles of transformers. Alternating current fundamentals, period, <br> frequency and angular frequency. Peak, and rms values. Complex representation of sinusoidal <br> quantities. Phasors. Application of complex numbers in simple ac circuits. Powers in ac <br> circuits. Complex-waveforms and introduction to the Fourier series. Resonance in simple <br> series ac circuits. Series RLC circuit as a band-pass filter. RC circuits as low-pass and high <br> pass filters.2 Circuit analysis techniquesSteady-state dc and ac circuit analysis:Kirchhoff's <br> laws. Voltage and current divider rules. The superposition principle.Mesh current analysis. <br> Nodal potential analysis. Non-ideal current and voltage sources, Thevenin's and Norton's <br> equivalent circuits. Maximum power transfer theory. |
| :--- | :--- |
| Module Overview |  |
| Additional Information | The material delivered in this module will be complemented by the practical skills module <br> where students will undertake practical experiments to reinforce the material delivered in this <br> module. |

## Assessments

| Assignment Category | Assessment Name | Weight | Exam/Test Length (hours) | Module Learning <br> Outcome Mapping |
| :--- | :--- | :--- | :--- | :--- |
| Exam | Exam | 60 | 2 | MLO2, MLO3, <br> MLO4 |
| Test | Series of on-line quizzes | 40 | 0 | MLO1, MLO2, <br> MLO5 |

## Module Contacts

## Module Leader

| Russell English | Yes | N/A |
| :--- | :--- | :--- |

## Partner Module Team

| Contact Name | Applies to all offerings | Offerings |
| :--- | :--- | :--- |

