

## **Module Proforma**

**Approved, 2022.02** 

## **Summary Information**

| Module Code         | 4514USST                   |
|---------------------|----------------------------|
| Formal Module Title | Engineering Mathematics 1a |
| Owning School       | Engineering                |
| Career              | Undergraduate              |
| Credits             | 10                         |
| Academic level      | FHEQ Level 4               |
| Grading Schema      | 40                         |

## **Module Contacts**

### **Module Leader**

| Contact Name    | Applies to all offerings | Offerings |
|-----------------|--------------------------|-----------|
| Dante Matellini | Yes                      | N/A       |

### **Module Team Member**

| Contact Name Applies to all offerings Offerings |  |
|-------------------------------------------------|--|
|-------------------------------------------------|--|

### **Partner Module Team**

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
|--------------|--------------------------|-----------|

# **Teaching Responsibility**

| LJMU Schools involved in Delivery |
|-----------------------------------|
| LJMU Partner Taught               |

# **Partner Teaching Institution**

### **Institution Name**

University of Shanghai For Science and Technology

## **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 22    |
| Tutorial             | 11    |

## **Module Offering(s)**

| Offering Code | Location | Start Month | Duration |
|---------------|----------|-------------|----------|
| SEP-PAR       | PAR      | September   | 12 Weeks |

## **Aims and Outcomes**

| Aims | To provide a foundation in engineering mathematics for its application to the solution of engineering problems. |
|------|-----------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                 |

# **Learning Outcomes**

## After completing the module the student should be able to:

| Code | Description                                                                                                                     |
|------|---------------------------------------------------------------------------------------------------------------------------------|
| MLO1 | Use basic numeric and algebraic manipulations in the solution of engineering problems.                                          |
| MLO2 | Use basic mathematical functions including trigonometric, exponential and logarithmic functions in the solution of engineering. |
| MLO3 | Use basic complex numbers in the solution of engineering problems.                                                              |
| MLO4 | Use and apply mathematical software to the solution of engineering mathematics problems.                                        |

#### **Module Content**

### **Outline Syllabus**

Introduction of the use of a computer algebra system (for example MATLAB or similar). Use of the software applied to the syllabus items below.

Revision of basic algebraic techniques: Substitution, simplification, factorisation, indices, evaluation and transposition of formulae, fractions and partial fractions. Linear and quadratic equations, linear simultaneous equations.

Functions: Notation, types of function, composite and inverse, graphs. Trigonometry: Angles and circular measure. Trigonometric ratios for right-angled triangles. Sine and cosine rules. Trigonometric functions and their graphs, simple trigonometric identities and equations. Engineering waves in mechanical and electrical problems.

Exponential function: Properties and graph. Natural logarithm as inverse of exponential function, graph and properties. Definitions and calculation of hyperbolic functions including inverse functions.

Complex numbers: Complex arithmetic, complex conjugate, Argand diagram. Rectangular, polar forms. Magnitude and phase. Very basic treatment of Euler's formula.

Introduction to calculus:

Limits, continuity, derivative by first principles;

Derivative rules including chain rule, product rule, quotient rule;

Derivatives of implicit functions and inverse functions.

#### **Module Overview**

#### **Additional Information**

This module provides a foundation in pre-calculus for level 4 students in mechanical and electrical engineering to enable them to apply this to the solution of engineering problems.

#### **Assessments**

| Assignment Category | Assessment Name | Weight | Exam/Test Length (hours) | Learning<br>Outcome<br>Mapping |
|---------------------|-----------------|--------|--------------------------|--------------------------------|
| Exam                | Exam            | 100    | 2                        | MLO1, MLO2,<br>MLO3, MLO4      |