

Discrete Mathematics

Module Information

2022.01, Approved

Summary Information

Module Code	4515CSQR
Formal Module Title	Discrete Mathematics
Owning School	Computer Science and Mathematics
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 4
Grading Schema	40

Teaching Responsibility

LJMU	Schools involved in Delivery
Comp	outer Science and Mathematics

Learning Methods

Learning Method Type	Hours
Lecture	33
Practical	22

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-PAR	PAR	September	12 Weeks

Aims and Outcomes

Aime	To enhance students problem solving skills through the use of mathematics and computer science techniques.
------	--

Learning Outcomes

Code	Number	Description
MLO1	1	Apply appropriate mathematical concepts and operations to solve problems
MLO2	2	Identify a problem and analyse it in terms of its significant parts and the information needed to solve it
MLO3	3	Evaluate possible solutions to problems, and defend the chosen solutions

Module Content

Outline Syllabus	Propositions and predicates, logical connectives, truth tables, Boolean AlgebraProof MethodsMathematical InductionConcepts of set theory, set membership, union, intersection and differenceCartesian products; coordinate systems; vectors and matrices Relations, inverelations, compositionFunctions and their properties; composition. Recursive definitionsCombinatoricsTrees and Graphs	
Module Overview		
Additional Information	This module is intended to provide a strong mathematical underpinning for computer science. The module engages the student with modelling and analysis techniques that are used to investigate and understand computing and software engineering problems. The intention is for the student to develop a scientific and engineering ethos that will enable the computer science student to think formally about computing.	

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Report	Modelling exercise	40	0	MLO1, MLO3
Exam	Examination	60	2	MLO1, MLO2, MLO3

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Martin Randles	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings
	, ,	ŭ