Liverpool John Moores University

Title:	MICROBIAL ECOLOGY
Status:	Definitive
Code:	5002MBBMOL (101565)
Version Start Date:	01-08-2011
Owning School/Faculty:	Pharmacy & Biomolecular Sciences
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences

Team	Leader
George Sharples	Y
Katie Evans	

Academic Level:	FHEQ5	Credit Value:	12.00	Total Delivered Hours:	31.50
Total Learning Hours:	120	Private Study:	88		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours	
Lecture	17.000	
Practical	12.000	
Workshop	1.000	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Exam	60.0	1.50
Practice	AS2	1 Assessed practical	40.0	

Aims

To provide a general introduction to the ecology of microorganisms in a variety of habitats, with particular reference to soil.

Learning Outcomes

After completing the module the student should be able to:

- 1 Show how microorganisms are adapted for life in different habitats.
- 2 Relate the complexity of soil to the problems encountered when studying the ecology of the microflora inhabiting such an environment.
- 3 Assess the effects of bacteria and fungi on soil fertility.
- 4 Describe the ways in which microorganisms can be used in the treatment of wastewater and sewage.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4
CW	1	2		

Outline Syllabus

Natural environments for microorganisms; qualitative and quantitative features of microbial populations inhabiting such environments.

Effects of physico-chemical conditions on microbial activity: pH, temperature,

aeration, water potential, nutrient availability; extreme environments.

Methods used for the study of microorganisms in their natural environments:

isolation methods; microbial biomass and activity determinations.

Microbial activities of ecological importance: carbon, nitrogen, sulphur and phosphorus cycles; degradation of man-made compounds; waste-water and sewage treatment.

Interactions: microbe-microbe interactions; plant-microbe interactions.

Learning Activities

-

References

Course Material	Book
Author	Atlas R M, Bartha R
Publishing Year	1998
Title	Microbial Ecology - Fundamentals and Applications
Subtitle	
Edition	
Publisher	Benjamin Cummings
ISBN	0-8053-0655-2

Notes

This module is designed to develop an understanding of the nature and behaviour of microorganisms populating various habitats with emphasis on their responses to particular physical and chemical conditions.