Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title:	BUILDING SERVICES ENGINEERING MATHEMATICS
Status:	Definitive
Code:	5003BEFD (108465)
Version Start Date:	01-08-2011

Owning School/Faculty:	Built Environment
Teaching School/Faculty:	Liverpool Community College

Team	emplid	Leader
Derek King		Y

Academic Level:	FHEQ5	Credit Value:	12.00	Total Delivered Hours:	57.00
Total Learning Hours:	120	Private Study:	63		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	42.000
Tutorial	12.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	End of module formal examination	50.0	3.00
Technology	AS2	Assignment	50.0	

Aims

To provide the students with the fundamental mathematical knowledge and analytical techniques required to support both the other modules of the programme and to enable them to perform routine mathematical and analytical functions in the workplace. The module is intended to enable students studying Building Services programmes to analyse, apply, investigate and evaluate mathematical and analytical techniques for mechanical, electrical and commercial building services situations.

Learning Outcomes

After completing the module the student should be able to:

- 1 Construct differential equations for the purpose of solving building services engineering problems.
- 2 Demonstrate a knowledge of the properties of trigonometrical functions and relate these to the characteristics of wave forms.
- 3 Analyse and solve problems using statistics and probability.
- 4 Construct and solve algebraic equations representing problems in building services engineering.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4
CW	1	2	3	4

Outline Syllabus

Differential Equations: General and particular solutions. Boundary condition. Equations of the type dy/dx=ky. Differential equation models in building services engineering.

Trigonometrical Functions: Properties of waves: Amplitude, wavelength, frequency, phase difference, etc

Graphs: Sin (theta), cos (theta), sin 2(theta), sin (theta)/2, sin2 (theta), etc.

Trigonometrical identities: $\sin (\text{theta})/\cos (\text{theta}) = \tan (\text{theta}), \sin 2 (\text{theta}) + \cos 2 (\text{theta}) = 1, \text{ compound angle formula, etc.}$

Addition of wave-forms: a sin(theta) + b $cos(theta) = R sin (theta \pm alpha)$ Statistics and Probability:

Data collection and representation: Frequency distributions, bar charts, histograms, cumulative frequency curves, etc.

Measures of central tendency: Mean, median, mode, standard deviation, etc. Probability: Mutually exclusive and independent events. Binomial, Poisson and normal distributions.

Algebra

Equations: Linear, quadratic, cubic and simultaneous equations. Graphical solution of equations.

Proportion: Direct and inverse proportion.

Matrices: Multiplication, transposition and inversion, applications.

Learning Activities

Lectures and tutorials.

References

Course Material	Book
Author	Croft, A. & Davidson, R.
Publishing Year	2003
Title	Mathematics for Engineers
Subtitle	
Edition	
Publisher	Prentice Hall
ISBN	013120193

Notes

In common with other disciplines within engineering and construction, mathematics is crucial to all aspects of Building Services Engineering. Understanding key mathematical concepts and applying them successfully to solve problems are vital skills every building services engineering student must acquire. This module teaches, applies and nurtures those skills. The ethos of the module is to build on the skills and knowledge gained at level 1 and to extend this so as to encourage students to engage fully in the problem-solving process at level 2.