Liverpool John Moores University

Title:	Drug analysis and spectroscopic interpretation		
Status:	Definitive		
Code:	5006CHACAP (117492)		
Version Start Date:	01-08-2019		
Owning School/Faculty:	Pharmacy & Biomolecular Sciences		
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences		

Team	Leader
Simon-Dieter Brandt	Y
Gillian Hutcheon	
Ian Bradshaw	

Academic Level:	FHEQ5	Credit Value:	24	Total Delivered Hours:	63
Total Learning Hours:	240	Private Study:	177		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	40
Practical	9
Seminar	3
Tutorial	3
Workshop	5

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Exam	Exam	Exam	60	3
Practice	Separation	Practical Separation	20	
Portfolio	Interpret	Interpretation	20	

Aims

To develop knowledge, practical experience and the interpretation skills necessary

for the quantitative and qualitative analysis of drugs and pharmaceutical compounds. This will be achieved using a wide range of techniques including chromatography and spectroscopy.

Learning Outcomes

After completing the module the student should be able to:

- 1 Understand the principles and applications of a range of spectroscopic and chromatographic techniques, together with their advantages and limitations.
- 2 Select an appropriate analytical technique for a particular analyte/matrix separation
- 3 Evaluate the quality of analytical data produced by separative methods
- 4 Select an appropriate method, and devise appropriate procedures for structural elucidation
- 5 Obtain chromatograms from GC and HPLC instrumentation
- 6 Identify, and determine the structure of unknown organic molecules via the interpretation of spectra

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam	1	2	3	4	5	6
Practical Separation	1	2	3	5		
Interpretation	4	6				

Outline Syllabus

• Sample preparation: Liquid/liquid, and liquid/solid extraction.

• Thin Layer Chromatography (TLC) and spot testing: Detection systems (UV/Visible, spray reagents, mobile and stationary phases)

• High Performance Liquid Chromatography (HPLC): Theory, instrumentation and application of HPLC and UPLC in drugs and forensic samples.

• Gas Chromatography (GC): Theory, instrumentation and application of GC and GCMS in drugs and forensic samples.

• UV/Visible Spectrophotometry and Infrared Spectroscopy: Interpretation of UV/Visible and IR spectra, and the identification of functional groups.

• NMR Spectroscopy: Theory, application, and structure elucidation. 1H, 13C NMR, DEPT, and COSY. Chemical shifts, shielding and deshielding effects.

• Mass Spectrometry: Theory, application, and interpretation of spectral data of mass spectrometry. Interpretation of fragmentation patterns for structural elucidation

Learning Activities

The module is taught through a series of Lectures, Practicals, Tutorials, Seminars and Wrokshops

Notes

Drugs Analysis and Spectroscopic Interpretation (Level 2) is a combination of 2 previous modules covering all of the analytical techniques used at Level 2. The module has been updated and reformatted to suit the current content demand