Liverpool John Moores University

Title:	COMPUTER AIDED MACHINING
Status:	Definitive
Code:	5008TECH (105303)
Version Start Date:	01-08-2016
Owning School/Faculty: Teaching School/Faculty:	Electronics and Electrical Engineering Electronics and Electrical Engineering

Team	Leader
Jamie Finlay	Y

Academic Level:	FHEQ5	Credit Value:	12	Total Delivered Hours:	30
Total Learning Hours:	120	Private Study:	90		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	10
Practical	20

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Essay	AS1	CAM Report Assignment	20	
Essay	AS2	Prismatic Component exercise	40	
Essay	AS3	Cylindrical Component exercise	40	

Aims

The aim of this module is to provide students with a practical understanding of computer aided part programming and machining.

Learning Outcomes

After completing the module the student should be able to:

- 1 Identify the elements of a CAM system
- 2 Produce and prove manual part programmes
- 3 Produce and prove computer aided part programmes

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

CW	1	3
CW	2	
CW	2	3

Outline Syllabus

CAM systems:

Hardware elements: computer eg mainframe, personal, computer specifications, power and memory, printer plotter, mouse digitizer, screens, disc drives.

Machine tools:

Machining and turning centres, axes of CNC machines, cutting tools, work holding devices, coolant systems, swarf removal systems.

Software elements:

operating system, CAM software, CAM database management systems, programme editing, diagnostic testing techniques.

Data:

Geometric data, material specifications CAD data, manufacturing data, tool data, cutter path, component profile, CAM file.

Manual Part Programming:

System initialisation, tooling data, position control and sequencing. Block, word and letter addresses; system mangement, positional data and coded data transfer. Macro routines, subroutines, zero shift, scaling and minor imaging.

Computer Aided Programming:

Generation of graphics; component profile definition, geometry manipulation, tooling and machinery sequences; cutter path simulation post processing, CAD profile and attribute data; material files; tool data; cutter location files. Macro routines, continous operations, automatic tooling sequences, standard components.

Learning Activities

A practical approach to learning will be adopted for this module. It will be supported by a series of lectures and tutorials covering examples of application of the theory.

Notes

The practical approach of this module will give students the experience of using a CAM system to produce a range of component types. The manual part programming element will give students an insight into the CAM programming conventions.