
Page 1 of 3

Liverpool John Moores University

Title: DATA STRUCTURES AND ALGORITHMS

Status: Definitive
Code: 5013DACOMP (125357)
Version Start Date: 01-08-2021

Owning School/Faculty: Computer Science and Mathematics
Teaching School/Faculty: Computer Science and Mathematics

Team Leader
 David Lamb Y

Academic
Level: FHEQ5

Credit
Value: 20

Total
Delivered
Hours:

57

Total
Learning
Hours:

200
Private
Study: 143

Delivery Options
Course typically offered: Semester 1

Component Contact Hours
Workshop 55

Grading Basis: 40 %

Assessment Details

Category Short
Description

Description Weighting
(%)

Exam
Duration

 Artefacts AS1 Design and implementation of
software

40 0

 Exam AS2 Examination 60 2

Aims

This is a practical, applied Software Engineering module with the aim of introducing
the student to the fundamentals of Abstract Data Types and complexity of operations
on ADTs followed by an implementation-based exploration of common data
structures and operations, their implementations and applications

Learning Outcomes

Page 2 of 3

After completing the module the student should be able to:

 1 Explain a range of fundamental data structures and their operations
 2 Analyse fundamental algorithms' complexity as applied to a range of ADT

implementations
 3 Evaluate data structures in a given problem domain
 4 Implement standard ADTs using both primitive language and library resources
 5 Synthesise appropriate algorithms and data structures to fulfil a problem

specification

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Implementation of
software

3 4 5

Examination 1 2

Outline Syllabus

Abstract Data Types and common implementation strategies:
Linear ADTs:
Lists (Arrays, Linked Lists)
Stacks, Queues
Non-Linear ADTs:
Trees, Binary Trees, BSTs
Maps (ListMaps, BSTMaps, HashMaps)
Graphs
Algorithms for structure operations; insert, remove, retrieval
Algorithms for structure navigation; search and sort
Algorithm types: iterative and recursive
Relationship between ADTs and computing fundamentals (e.g. Stack, Queue)
Use of Big O notation to specify time complexity for simple algorithms
Using a program debugger to monitor program state, and halt/control execution as
required.
Use of a program debugger to inspect the call stack and stack frames

Learning Activities

Workshops, Directed Study Tasks
This module will have online practical.

Notes

This module is a technical, skills-focused module. It will require previous experience
in programming. It will build on existing programming-based skills such as problem /
functional decomposition and the use of an IDE to develop and test programs. Basic

Page 3 of 3

operational familiarity with a debugger will be assumed but reinforced and built on
during this module.

