Liverpool John Moores University

Title: DATA STRUCTURES AND ALGORITHMS

Status: Definitive

Code: **5013DACOMP** (125357)

Version Start Date: 01-08-2021

Owning School/Faculty: Computer Science and Mathematics Teaching School/Faculty: Computer Science and Mathematics

Team	Leader
David Lamb	Υ

Academic Credit Total

Level: FHEQ5 Value: 20 Delivered 57

Hours:

Total Private

Learning 200 Study: 143

Hours:

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours	
Workshop	55	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Artefacts	AS1	Design and implementation of software	40	
Exam	AS2	Examination	60	2

Aims

This is a practical, applied Software Engineering module with the aim of introducing the student to the fundamentals of Abstract Data Types and complexity of operations on ADTs followed by an implementation-based exploration of common data structures and operations, their implementations and applications

Learning Outcomes

After completing the module the student should be able to:

- 1 Explain a range of fundamental data structures and their operations
- 2 Analyse fundamental algorithms' complexity as applied to a range of ADT implementations
- 3 Evaluate data structures in a given problem domain
- 4 Implement standard ADTs using both primitive language and library resources
- 5 Synthesise appropriate algorithms and data structures to fulfil a problem specification

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Implementation of 3 4 5

software

Examination 1 2

Outline Syllabus

Abstract Data Types and common implementation strategies:

Linear ADTs:

Lists (Arrays, Linked Lists)

Stacks, Queues
Non-Linear ADTs:

Trees, Binary Trees, BSTs

Maps (ListMaps, BSTMaps, HashMaps)

Graphs

Algorithms for structure operations; insert, remove, retrieval

Algorithms for structure navigation; search and sort

Algorithm types: iterative and recursive

Relationship between ADTs and computing fundamentals (e.g. Stack, Queue)

Use of Big O notation to specify time complexity for simple algorithms

Using a program debugger to monitor program state, and halt/control execution as required.

Use of a program debugger to inspect the call stack and stack frames

Learning Activities

Workshops, Directed Study Tasks This module will have online practical.

Notes

This module is a technical, skills-focused module. It will require previous experience in programming. It will build on existing programming-based skills such as problem / functional decomposition and the use of an IDE to develop and test programs. Basic

operational familiarity with a debugger will be assumed but reinforced and built on during this module.