Liverpool John Moores University

Title:	ALTERNATIVE BUILDING MATERIALS AND DESIGN		
Status:	Definitive		
Code:	5015TECH (105310)		
Version Start Date:	01-08-2016		
Owning School/Faculty: Teaching School/Faculty:	Maritime and Mechanical Engineering Maritime and Mechanical Engineering		

Team	Leader
Geraint Phylip-Jones	Y

Academic Level:	FHEQ5	Credit Value:	24	Total Delivered Hours:	72
Total Learning Hours:	240	Private Study:	168		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	24
Practical	48

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Essay	AS1	Building Environmental Assessment	25	
Essay	AS2	Passive Building Design Project	75	

Aims

This module examines the design of modern ecological buildings from an all encompassing perspective. It also covers site considerations and the use of sustainable building materials.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically evaluate a buildings ecological footprint based on it's situation, design and material selection.
- 2 Identify and use passive design principles to a new domestic and industrial build project.
- 3 Select suitable alternative materials for a range of building features.
- 4 Use a range of modelling software to aid the building design process.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

CW	1		
CW	2	3	4

Outline Syllabus

The whole house approach to design for ecological building: site considerations; space and structure; legislation and standards; Ecological building materials; Healthy buildings; The low energy house; Ecological renovation. Climate influences on the design of buildings;

Passive design principles; Environment sensitive design: housing, commercial buildings.

Solar water heating. Introduction to flat plate collectors; solar water installation; Controls; System assembly.

Principles of natural ventilation; Cooling techniques: ventilation; ground; night; radiation; evaporation; breathing walls.

Water collection and economy in buildings; Waste water disposal; Dampness and condensation.

Alternative building methods. Classification of soils by particle size from clay, silt and gravel to rock; Stabilised soil; appropriate methods of soil stabilisation; Composite materials; Frames and membranes; Straw bale building; Timber preservation; round pole and sawn timber, plywood.

Daylight and daylight factors; Artificial light; lighting: three dimensional effects; Sunlight and solar geometry; Solar irradiance. Daylight factor measurement in real buildings; Model study of daylight factor; real skies; Model studies of daylight factor; artificial sky; Computer evaluation of daylight factor. Energy Efficient Lighting, upgrading of existing systems to include energy saving lamps/tubes and electronic ballast.

Energy performance of buildings. Energy consumption breakdown in building types.

Thermal properties of buildings; thermal comfort. Description of materials within an environmental context; Embodied energy of building materials; Materials index.

Demonstration of computer application: dynamic thermal simulation, lighting simulation, computational fluid dynamics.

Learning Activities

This module focuses on a practical approach to learning with work-based learning activities relating to building design and ecological materials. A range of structured lectures case study sessions will also be employed. Students will also be expected to complete a field trip to the Centre of Alternative Technology.

Notes

This module will be delivered in a practical manner, using a range a learner centred activities, case studies, design and build activities, some of which will be completed at the Centre of Alternative Technology.