
Page 1 of 3

Liverpool John Moores University

Title: PROGRAMMING LANGUAGE THEORY

Status: Definitive
Code: 5018DACOMP (125362)
Version Start Date: 01-08-2021

Owning School/Faculty: Computer Science and Mathematics
Teaching School/Faculty: Computer Science and Mathematics

Team Leader
 Paul Bell Y

Academic
Level: FHEQ5

Credit
Value: 20

Total
Delivered
Hours:

57

Total
Learning
Hours:

200
Private
Study: 143

Delivery Options
Course typically offered: Semester 1

Component Contact Hours
Lecture 33
Practical 22

Grading Basis: 40 %

Assessment Details

Category Short
Description

Description Weighting
(%)

Exam
Duration

 Artefacts AS1 Design and implementation of
basic language, interpreter and
associated report

60 0

 Exam AS2 Exam 40 2

Aims

The module's aim is to provide an introduction to the concepts behind programming
languages, along with an explanation of the underpinnings of programmable
machines. It will also discuss and demonstrate a variety of programming languages
across both Imperative and Declarative paradigms

Page 2 of 3

Learning Outcomes

After completing the module the student should be able to:

 1 Explain the key concepts in specifying and evaluating a programming language.
 2 Apply appropriate formal methods to specify a programming language
 3 Design and implement an interpreter/compiler for a simple imperative

programming language
 4 Appraise Imperative and Declarative programming paradigms as an appropriate

mechanism for a variety of problem domains

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Basic language,
interpreter

1 2 3 4

Examination 1 2

Outline Syllabus

Abstract views of program execution:
FSMs, the interlock machine
Turing Machines; the computing machine; addition of configurable memory

Defining and processing a language:
Fundamental Language Theory: Grammars and Syntax
Fundamental Compiler Theory: Lexical, Syntactical and Semantic Analysis
Parse/syntax trees and binding

Language Paradigms:
Imperative vs Declarative Languages
State transformations vs. Referential transparency
How vs Why & why is this important?

Learning Activities

Lab-Lectures, Directed Study Tasks
This module will have online practical.

Notes

This module combines theory and practical work to familiarise a student with the
fundamentals of programming languages and their compilation / interpretation for
execution; culminating with the student specifying and designing their own basic
imperative language.

It will make use of programming-related skills from previous modules; particularly

Page 3 of 3

functional decomposition and basic data design. It will, in parts, reinforce and
present alternative use cases for materials covered in Data Structures.

The module will assume that the student is already with some fundamentals of
imperative programming, namely:
-variable declaration, state modification and scope.
-how to design and write software that correctly uses sequential execution,
branching, iteration and function-calling.

