Liverpool John Moores University

Title:	ELECTRONICS
Status:	Definitive
Code:	5022TECH (105423)
Version Start Date:	01-08-2016
Owning School/Faculty: Teaching School/Faculty:	Electronics and Electrical Engineering Electronics and Electrical Engineering

Team	Leader
Mahamoud Ahmed	Y

Academic Level:	FHEQ5	Credit Value:	24	Total Delivered Hours:	122
Total Learning Hours:	240	Private Study:	118		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	48
Practical	48
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Exam	AS1	Examination	50	2
Essay	AS2	Written Assignment	25	
Essay	AS3	Laboratory Assignment	25	

Aims

To provide a practical knowledge of Digital & Analogue Electronics.

Learning Outcomes

After completing the module the student should be able to:

- 1 Design a sequential counter
- 2 Analyze the operation of synchronous and asynchronous sequential circuits
- 3 Design synchronous sequential circuits
- 4 Use simple integrated circuits to build more complex digital systems
- 5 Use combinations of operational amplifiers, transistor, diodes etc.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4	5
CW	3	5			
CW	1	5			

Outline Syllabus

Synchronous and asynchronous circuits. Operation, timing diagrams and state diagrams.

Design of synchronous circuits: counters and shift registers. MSI logic elements: Multiplexes, Demultiplexes, encoders, decoders, counters etc. Operational amplifiers; real versus ideal behavior. Practical circuits using op amps, diodes and transistors for signal conditioning. Frequency response, cascading amplifiers.

Differential amplifiers, noise and interference.

Learning Activities

A series of lectures, tutorials and practical sessions

Notes

This module provides a practical knowledge of Digital & Analogue Electronics.