Liverpool John Moores University

Title:	DIVERSITY AND EVOLUTION OF LIFE	
Status:	Definitive	
Code:	5023NATSCI (122234)	
Version Start Date:	01-08-2017	
Owning School/Faculty:	Natural Sciences & Psychology	
Teaching School/Faculty:	Natural Sciences & Psychology	

Team	Leader
Robbie Rae	Y
Peter Falkingham	
Will Swaney	
Craig Wilding	
Carlo Meloro	
Alan Gunn	

Academic Level:	FHEQ5	Credit Value:	24	Total Delivered Hours:	57
Total Learning Hours:	240	Private Study:	183		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	32
Practical	18
Workshop	5

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Essay	EXAM Essay	50	2
Report	Practical	Practical Write-UP	50	

Aims

To provide an introduction to the diversity of life on Earth. To explain origin and

evolution of major taxonomic groups including archaea, bacteria, fungi, algae, plants, and animals. To explain key evolutionary events such as transition from anaerobic to aerobic life, symbiosis and evolution of the eukaryotic cell, origin of multicellularity, colonization of land and air.

Learning Outcomes

After completing the module the student should be able to:

- 1 Give an account of the main biological characteristics of the major taxonomic groups.
- 2 Evaluate the techniques by which living organisms are identified and species relationships determined.
- 3 Discuss key events in the evolution of life.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM Essay	1	3
Practical Write-UP	1	2

Outline Syllabus

Rules of nomenclature and principles of taxonomy and systematics. Phylogenetic relationships and biology of the major groups including archaea, bacteria, fungi, algae, plants, and animals. Evolution of structures and features. Key evolutionary events such as transition from anaerobic to aerobic life, symbiosis and evolution of the eukaryotic cell, evolution of multicellularity, colonization of land and air.

Learning Activities

The module will be delivered through a combination of lectures, practicals and workshops.

Notes

Rules of nomenclature and principles of taxonomy and systematics. Phylogenetic relationships and biology of the major groups including archaea, bacteria, fungi, algae, plants, and animals. Evolution of structures and features. Key evolutionary events such as transition from anaerobic to aerobic life, symbiosis and evolution of the eukaryotic cell, evolution of multicellularity, colonization of land and air.