Liverpool John Moores University

Title:	POLLUTION AND SOILS INVESTIGATION		
Status:	Definitive		
Code:	5101NATSCI (112585)		
Version Start Date:	01-08-2016		
Owning School/Faculty: Teaching School/Faculty:	Natural Sciences & Psychology Natural Sciences & Psychology		

Team	Leader
Colm Bowe	Y
Kostas Kiriakoulakis	

Academic Level:	FHEQ5	Credit Value:	24	Total Delivered Hours:	62
Total Learning Hours:	240	Private Study:	178		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	32
Off Site	6
Practical	22

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	exam	exam	40	2
Report	rpt1	soil report	35	
Report	rpt2	marine pollution report	25	

Aims

To provide a broad introduction to a) the environmental system of soils; and b) the environmental issue of pollution, using a mixture of lectures, fieldwork and practical laboratory work. Part A aims to introduce the student to the soil system and the methods used to investigate the fundamentals of soil science. Part B aims to identify the main types, sources, fates and impacts of atmospheric, terrestrial and aquatic pollutants.

Learning Outcomes

After completing the module the student should be able to:

- 1 identify the important components of the soils, and the sources, fate and toxicity of the most significant environmental pollutants of terrestrial and aquatic ecosystems.
- 2 recognise and describe major processes operating within soils and other environmental media and identify and record their manifestation in the field.
- 3 plan and perform laboratory analysis of soil samples and ecotoxicological assays within a team, record and handle data and communicate findings in a report.
- 4 evaluate, through knowledge of selected case studies, how individuals, populations, communities and ecosystems are affected and respond to environmental pollution.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	4
soil report	1	3	
marine pollution report	1	4	

Outline Syllabus

Part A 'Soils': introduction to soil and the soil system; soil formation factors; soil physical properties; soil profile description and mapping; soil processes; major soil types; soils of the world; soil ecosystem services.

Part B 'Pollution': introduction to environmental pollution; types, sources, fate, toxicity and impacts of pollution in terrestrial, atmospheric, freshwater and marine environments.

Learning Activities

The module is delivered using a mixture of lecture and practical sessions. Practical sessions involve laboratory and field work.

Notes

This module investigates interaction between soil components and processes and their manifestation in the field, particularly in the context of anthropogenic influences. This is coupled with a broad introduction to pollutants in the wider environment, from an ecological perspective: identification, accumulation, persistence and toxicity; ecological impacts. Recognition of soil and aquatic pollution in the field and laboratory is supported by ecotoxicological testing of pollutants; prediction of toxicity; laboratory testing and scaling up to ecological systems. Case studies of the effects of environmental pollution on terrestrial and aquatic ecosystems provide the framework of tuition.