
Data Structures and Algorithms for Games

Module Information

2022.01, Approved

Summary Information

Module Code 5107COMP

Formal Module Title Data Structures and Algorithms for Games

Owning School Computer Science and Mathematics

Career Undergraduate

Credits 20

Academic level FHEQ Level 5

Grading Schema 40

Teaching Responsibility

LJMU Schools involved in Delivery

Computer Science and Mathematics

Learning Methods

Learning Method Type Hours

Lecture 22

Practical 33

Module Offering(s)

Display Name Location Start Month Duration Number Duration Unit

SEP-CTY CTY September 12 Weeks

Aims and Outcomes

Page 1 of 3



Aims
To study abstract data types (ADTs) and common implementations of these data types.To 
gain an understanding of how a game application utilises both Parallel and Sequential 
Algorithms.To develop applications using the Boost/STL C++ containers in order to implement 
games applications.To understand the application of the data-oriented design and Object-
Oriented Design paradigms on Data Structures. To build on programming skills through 
implementation of algorithms and use of appropriate data structures in problem solving for 
games development. To recognise and specify how complexity of operations on these ADTs 
and their overall performance characteristics are affected by both the ADT in question and its 
implementation strategy

After completing the module the student should be able to:

Learning Outcomes

Code Number Description

MLO1 1 Appraise a range of fundamental data structures and their operations.

MLO2 2 Analyse and differentiate fundamental algorithms’ (such as insert, remove, search, sort) time and 
space complexity characteristics as applied to a range of ADT implementations.

MLO3 3 Evaluate Sequential vs Parallel Algorithm Strategies and their relationship to CPU / GPU 
architectures.

MLO4 4 Apply appropriate data structures in order to solve specific sub problems related to game and 
game engine development.

MLO5 5 Construct user-defined ADTs in C++ and utilise the Boost/STL APIs in order to store data related 
to both game mechanics and game engine architecture.

MLO6 6 Develop software that utilises appropriate algorithms and data structures to satisfy a technical 
game design specification.

Module Content

Page 2 of 3



Outline Syllabus
Algorithms for structure operations; insert, remove, retrievalAlgorithms for structure navigation;
search and sortAlgorithm types: iterative and recursiveRelationship between ADTs and 
computing fundamentals (e.g. Stack, Queue)Use of Big O notation to specify time complexity 
for simple algorithmsDebug / Profiling tools for Internal State Examination.Debug / Profiling 
tools for algorithmic execution analysis (e.g. Frame Analysis)Memory Management: Pointers, 
References, Heap, Stack. STL and Boost: algorithms, iterators, and containers.Introduction to 
Parallel Programming- Goals of parallelism (e.g., throughput) versus concurrency (e.g., 
controlling access to shared resources)- Parallelism, communication, and coordination- 
Programming constructs for coordinating multiple simultaneous computations- Need for 
synchronization- Data races (simultaneous read/write or write/write of shared state)- Higher-
level races (interleavings violating program intention, undesired non-determinism)- Lack of 
liveness/progress (deadlock, starvation)- Game Specific Structures: - Scene Graphs - 
BSP/Quad Tree/kd-tree/OctTree- Frustums. - Linear Data Managers and Object Aliasing- 
Broadphase Collision Containers- Component-Based Game Objects.- Buffers and Queues – 
CPU vs GPU Representation.- BitSets and Enumerations- Enumerated Dictionaries. - 
Pipelines and Caches- Type Semantics, SISD vs SIMD Access Traits. - Review of physical 
memory and memory management hardwareData Oriented Programming vs. Object 
Programming solutions for Data Structure Representation. Brute Force/Greedy/Divide and 
ConquerC++ TemplatesC++ Class and Pointer Memory LayoutsC++ Specific Optimisation 
Strategies.Sequential vs. parallel processingParallel programming vs. concurrent 
programmingRequest parallelism vs. Task parallelismAbstract Data Types and common 
implementation strategies:- Linear ADTs:- Lists (Arrays, Linked Lists)- Stacks, Queues- Non-
Linear ADTs:- Trees, Binary Trees, BSTs- Maps (ListMaps, BSTMaps, HashMaps)- Graphs- 
Undirected- Directed- Weighted- Graph Theory Fundamentals (Nodes, Edges etc).

Module Overview

Additional Information
This module is a technical, skills-focused module. Students will be introduced to Data 
Structures as Abstract Data Types and cover the fundamentals of discrete mathematics which 
provide the foundations for data structure design and implementation. Students will gain 
exposure of how to create their own implementation in C++ and the C++ Standard Template 
Library Implementations. Each structure will be covered from a games programming 
perspective, demonstrating real-world usage within game engines and game applications. The 
module will culminate with a look into parallel algorithms and how games apply parallelisation 
across CPU and GPU hardware using data structures. It will require previous experience in 
programming; It will build on existing programming-based skills such as problem / functional 
decomposition and the use of an IDE to develop and test programs.

Assessments

Assignment Category Assessment Name Weight Exam/Test Length (hours) Module Learning 
Outcome Mapping

Artefacts Extending Game Using 
DSA

60 0 MLO4, MLO5, 
MLO6

Centralised Exam Examination 40 1.5 MLO1, MLO2, 
MLO3

Module Contacts

Module Leader

Contact Name Applies to all offerings Offerings

Yann Savoye Yes N/A

Partner Module Team

Contact Name Applies to all offerings Offerings

Page 3 of 3


