

3D Computer Graphics

Module Information

2022.01, Approved

Summary Information

Module Code	5108COMP
Formal Module Title	3D Computer Graphics
Owning School	Computer Science and Mathematics
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 5
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery

Computer Science and Mathematics

Learning Methods

Learning Method Type	Hours
Lecture	22
Practical	33

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-CTY	CTY	September	12 Weeks

Aims and Outcomes

Aims	To provide mathematical knowledge essential in complex 3D graphics and animation. To explain the key principles of 3D computer graphics. To develop skills in 3D computer graphics operations using modern 3D graphical API. To explain GPU graphics programming using shaders.
------	---

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Explain the real-time programmable rendering pipeline and the mathematical concepts underpinning each stage.
MLO2	2	Assemble a 3D scene using polygonal mesh techniques.
MLO3	3	Implement complex 3D affine transformations and procedural algorithms for transform control in a real-time GPU-accelerated interactive 3D graphical application.
MLO4	4	Compare and contrast the key conceptual differences and algorithmic processes between offline rendering and real-time rendering.
MLO5	5	Render complex 3D geometry using both local and physically based global illumination schemes in real-time using the programmable rendering pipeline.

Module Content

Outline	CV	lahue
Outilite	SVI	ıavus

Mathematics principles:- Solving linear inequalities.- Discrete sampling and interpolation.-Revision on Vectors and Matrices: Mathematical and geometric definitions of vector, Vectors vs. Points, Vector additions, subtraction, and multiplications, Vector dot product and cross product, unit vector, Transforms and Matrices. Applying these concepts in 3D space.- 3D Coordinate space: Euclidean Geometry, 3D Cartesian Coordinates. Affine and coordinate system transformations.- Theory of rotation in 3D and its implementation: Euler Angle, Tait-Bryan, Axis-Angle and Quaternion (including Complex Numbers).Introduction to Programmable Graphics Pipeline using GPU Shaders.- Pipeline Stages. - Local, World, View and Screen Spaces - Simple triangle rasterization Polygonal representation - Polygon Meshes: Vertices, Edge and Faces, Graphics primitives, Indexed triangle mesh, surface normal. Buffer formations and Topologies - DCC (Digital Content Creation) Content Importing and Data Parsing for Polygonal Meshes and Texture/Buffer Resources. Texture mapping, including-Diffuse, Specular and Normal mapping.- Multi-Texturing. - Magnification (point sampling, linear sampling)- Minification and MIP Mapping- Texture as a Resource, Render Targets and RTT.-Texture mapping implementation using shaders. Illumination and shading model including, -Basic radiometry- Rendering in nature: Introduction to Physically-Based Lighting.- Local Illumination vs. Global Illumination- Indirect vs. Direct Lighting.- Simple BRDF-based lighting techniques.- Phong Illumination Model: Ambient, Diffuse and specular lighting.- Light sources: Direct, Point and Spot light sources. - Normal vector calculations - Local illumination implementation using shaders. Theory of viewing and projection in 3D and their implementation. - Specifying output window, window aspect ratio, view frustum, field of view, and zoom. - View Matrix- Orthographic and Perspective Projection. - Projection matrix. Pipeline Control:- Data Semantics, State Objects, Blend Equations, Z-Culling, Winding Order, Constant Buffers, Shader Parameters and Function Specifications.- Sampling and anti-aliasing3D Animation Techniques: - Euler, Axis-Angle, Quaternion- Key-Frame- LERP and SLERP

Module Overview

Additional Information

This module builds on the students' knowledge of 2D graphics and furthers their knowledge in 3D computer graphics, from the underlying mathematical principles to their application in the development of 3D computer games. The module uses a modern GPU-driven graphics API to demonstrate how complex 3D scenes can be constructed using a wide range of 3D graphical techniques. Students will be taught about the programmable pipeline, including shader implementations of lighting and texture calculations.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Report	Shader & Procedural Animation	100	0	MLO1, MLO2, MLO3, MLO4, MLO5

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Sud Sudirman	Yes	N/A

Partner Module Team

Contact Name Applies to all offerings Offerings	Contact Name	Applies to all offerings	Offerings
---	--------------	--------------------------	-----------