

Mechatronics

Module Information

2022.01, Approved

Summary Information

Module Code	5108MECH
Formal Module Title	Mechatronics
Owning School	Engineering
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 5
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery	
Engineering	

Learning Methods

Learning Method Type	Hours
Practical	24
Tutorial	2

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
JAN-CTY	СТҮ	January	12 Weeks

Aims and Outcomes

Aims	To develop a practical understanding of how sensors and actuators may be used, along with embedded systems, to control and monitor mechanical engineering systems.
------	--

Learning Outcomes

Code	Number	Description
MLO1	1	Select appropriate sensors for an application and demonstrate an understanding of their characteristics, and practical interfacing requirements
MLO2	2	Select appropriate actuators for an application and demonstrate an understanding of their characteristics, and drive requirements
MLO3	3	Determine an appropriate control system structure for an engineering application and demonstrate an understanding of the characteristic dynamic response of a system.
MLO4	4	Demonstrate an applied understanding of hardware interfaces and methods of programming.

Module Content

Outline Syllabus	The list below provides an overview of topics which may be covered in this module:Sensors• Measured Physical Quantityo Temperatureo Position, Displacement and Velocityo Accelerationo Pressure & Forceo Fluid Flow Rates• Signal Typeo Analogue o Digital• Characteristicso Range & Spano Sensitivityo Precision, Accuracy, RepeatabilityActuators and Indicators• Electro-mechanical Actuatorso Motorso Solenoids• Indicators and Displayso LED Lightso LED DisplaysEmbedded Systems Hardware• Micro-controllers • Characteristics of I/Oo Analogue Voltage (e.g. Typical Ranges: 0-5v, +/-10v)o Digital (e.g. Typical Voltages: 3.3v, 5v, 12v, 24v)• Serial Interfaces o i2c and UART• Signal Conditioning & Filteringo Amplifierso Filterso ProtectionProgramming Embedded Systems• Common programming design patterns using While loops and conditional statements • Reading from, and writing to hardware ports.Control• Control Objectiveso Set-point o Tracking o Stabilisation • Closed-loop Control• Feed-forward control• ON/OFF (Bang-Bang) Control
Module Overview	The aim of this module is to develop a practical understanding of how sensors and actuators may be used, along with embedded systems, to control and monitor mechanical engineering systems.
Additional Information	This model incorporates elements of flipped delivery in order to encourage engagement. The source of primary knowledge for this module will be via material made available through the VLE, while understanding will be developed through a tutorial and significant practical content.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Report	Practical assessments in a lab	100	0	MLO1, MLO2, MLO3, MLO4

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Frederic Bezombes	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------