Liverpool John Moores University

Title: Data Structures and Algorithms

Status: Definitive

Code: **5114ENG** (119782)

Version Start Date: 01-08-2016

Owning School/Faculty: Electronics and Electrical Engineering Teaching School/Faculty: Electronics and Electrical Engineering

Team	Leader
Clifford Mayhew	Υ

Academic Credit Total

Level: FHEQ5 Value: 20 Delivered 44

Hours:

Total Private

Learning 200 Study: 156

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	25	
Practical	15	
Seminar	2	

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Report	Report	Application of Data Structures	20	
Report	Report	Application of Algorithms	30	
Exam	Exam	Algorithm Exam	50	2

Aims

Examine the data structures used in modern computer applications Understand the algorithms that efficiently use those data structures

Learning Outcomes

After completing the module the student should be able to:

- 1 Choose the most appropriate data structure for a particular problem
- 2 Discuss a number of important computer algorithms and data structures.
- 3 Understand how to evaluate an algorithm for efficiency.
- 4 Implement a simple data structure.
- 5 Use data structures and apply algorithms to solve a complex problem.
- 6 Use Pointers and appropriate programme structure.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Data Structures Report 4 6

Algorithms Report 1 3 5

Exam 2

Outline Syllabus

Data Structures, List, Stack, Queue, Tree, Hash Table.

Sorting, Bubble Sort, Selection Sort, Insertion Sort, Shellsort, MergeSort, QuickSort, Bucket Sort, Radix sort,

Tree traversal, Breadth/Depth first search. Shortest path, Dijkstra's.

Searching, Sequential Search, Binary Search, Binary Search Tree.

Minimum spanning tree, Prim's and Kruskal's Algorithms.

Learning Activities

Lecture, demonstration and practical activities applying topics discussed.

Notes

This module introduces the importance of the use of relevant data structures and algorithms in program design.