Liverpool John Moores University

Title:	Applied Mechanics 2
Status:	Definitive
Code:	5115ENG (120016)
Version Start Date:	01-08-2019
Owning School/Faculty:	Maritime and Mechanical Engineering
Teaching School/Faculty:	Maritime and Mechanical Engineering

Team	Leader
Dan Stancioiu	Y

Academic Level:	FHEQ5	Credit Value:	20	Total Delivered Hours:	74
Total Learning Hours:	200	Private Study:	126		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	48
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS2	Examination	70	2
Test	AS1	Coursework - V.L.E. based tests	30	

Aims

To provide the means for solving many basic engineering problems by learning the principles of mechanics for rigid and deformable solid bodies.

Learning Outcomes

After Completing the module the student should be able to: 1. Determine stresses and strains in an elastic continuum 2. Assess modes of failure for components under bending and torsional loading3. Determine the equations of motion for rigid bodies undergoing translation, rotation about fixed axes and general plane motion.

Analyse the dynamical behaviour of systems with one-degree-of-freedom by applying the notions of stiffness, damping, natural frequency, rate decay.

4. Determine mathematical models for systems with two-degree-of-freedom, analyse their dynamical behaviour in terms of natural frequencies and modes and evaluate solutions for vibration control.

Learning Outcomes

After completing the module the student should be able to:

- 1 Determine stresses and strains in an elastic continuum
- 2 Assess modes of failure for components under bending and torsional loading
- 3 Determine the equations of motion for rigid bodies undergoing translation, rotation about fixed axes and general plane motion. Analyse the dynamical behaviour of systems with one-degree-of-freedom by applying the notions of stiffness, damping, natural frequency, rate decay.
- 4 Determine mathematical models for systems with two-degree-of-freedom, analyse their dynamical behaviour in terms of natural frequencies and modes and evaluate solutions for vibration control.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination	1	2	3	4
VLE Based Tests	1	2	3	4

Outline Syllabus

1 Continuum Stress Analysis

Elasticity of a continuum. 2D stress/strain transformations, Mohr's Circle (stress/strain). Use of strain gauges to determine strains in loaded components. Practical examples.

Thin and thick walled cylinders. Application of thin wall pressure vessel theory. Cylindrical and spherical vessels. Application of Lame's equations .

2 Failure Modes

Yield criteria. Application of Rankine, Tresca and Von-Mises theories to components under bending and torsional loading conditions. Application to brittle and ductile materials.

Elastic instability. Critical buckling loads. Use of Euler, Rankine-Gordon and Perry-

Robertson methods.

Fatigue. S-N curves and endurance limit. Factors affecting the endurance limit and their application. Effects of non-zero mean stress.

3 Dynamics. Vibration 1

General planar motion. Two-dimensional kinematics and dynamics of rigid bodies. Applications.

1DOF systems. Free vibration of undamped/damped systems. Harmonic motion/Damped motion. Response of one-degree-of-freedom systems to harmonic excitations.

4 Vibration 2

2DOF systems. Free vibration of two-degree-of-freedom systems. Eigenvalues and modes. Frequency response function. Vibration isolation. Vibration transmission. *Practical examples: Suspension systems, Vibration absorbers.*

Learning Activities

Lectures and tutorials

Notes

The module extends previous studies in mechanics by examining more applied problems, which relate to real mechanical systems. It helps to strengthen the student's knowledge for successful mechanical design.