Liverpool John Moores University

Title:	REMOTE SENSING
Status:	Definitive
Code:	5118NATSCX (101341)
Version Start Date:	01-08-2011
Owning School/Faculty: Teaching School/Faculty:	Natural Sciences & Psychology Natural Sciences & Psychology

Team	Leader
Anne-Marie Nuttall	Y

Academic Level:	FHEQ5	Credit Value:	12.00	Total Delivered Hours:	30.00
Total Learning Hours:	120	Private Study:	90		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	9.000
Off Site	3.000
Practical	18.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	AS1	Practical portfolio	60.0	
Test	AS2	Phase test	20.0	
Report	AS3	Field report	20.0	

Aims

To introduce students to the theory and applications of remote sensing. To develop skills in image processing and interpretation and digital manipulation of spatial data.

Learning Outcomes

After completing the module the student should be able to:

- 1 Interpret geographical and geomorphological information from aerial photographs and satellite images.
- 2 Explain the physical principles of remote sensing.
- 3 Demonstrate familiarity with a range of digital imagery, maps and topographic data.
- 4 Perform integration, manipulation and analysis of field and image data.
- 5 Produce maps using appropriate software packages.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

portfolio	1	3	5
test	2		
report	4		

Outline Syllabus

Introduction to remote sensing. Interpretation of aerial photographs. Integration of field and image data. Principles and applications of GPS. Satellite imagery, georeferencing & digital image processing. Digital elevation models. Importing and manipulating point data. Introduction to spatial modelling. Case studies of remote sensing applications in earth and environmental sciences.

Learning Activities

The module combines lectures, practicals, fieldwork and hands-on computer-based exercises.

References

Course Material	Book
Author	Jensen, J.R.
Publishing Year	2007
Title	Remote Sensing of the Environment: an Earth Resource
	Perspective
Subtitle	
Edition	2nd
Publisher	Prentice Hall
ISBN	0131889508

Course Material	Book
Author	Cracknell, A.P. & Hayes, L.

Publishing Year	2006
Title	Introduction to Remote Sensing
Subtitle	
Edition	2nd
Publisher	Taylor & Francis
ISBN	0849392551

Course Material	Book
Author	Lillesand, T.M., Kiefer, R.W., Chipman, J.W.
Publishing Year	2004
Title	Remote Sensing & Image Interpretation
Subtitle	
Edition	5th
Publisher	Wiley
ISBN	0471451525

Course Material	Book
Author	Kaplan, E.D., Hegarty, C.J.
Publishing Year	2005
Title	Understanding GPS: Principles and Applications
Subtitle	
Edition	2nd
Publisher	Artech House
ISBN	000725119

Notes

This module introduces the principles and applications of remote sensing (aerial photography, satellite imagery, GPS) in the environmental and geosciences. The emphasis is on practical skills applied to these subject areas.