Liverpool John Moores University

Title:	Marine Design
Status:	Definitive
Code:	5122MECH (125070)
Version Start Date:	01-08-2018
Owning School/Faculty:	Maritime and Mechanical Engineering
Teaching School/Faculty:	Maritime and Mechanical Engineering

Team	Leader
Allan Carrier	Y

Academic Level:	FHEQ5	Credit Value:	20	Total Delivered Hours:	72
Total Learning Hours:	200	Private Study:	128		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	44	
Off Site	4	
Tutorial	22	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS2	Examination	60	2
Portfolio	AS1	Portfolio	40	

Aims

To provide a comprehensive introduction to Marine Engineering, the module will concentrate on main and auxiliary propulsion systems, their safe and efficient operation, and the maintenance requirements for these.

Learning Outcomes

After completing the module the student should be able to:

- 1 Apply design methodology utilising suitable simulation software to analyse marine components and systems.
- 2 Evaluate the application of different types of ship propulsion plants, and identify the advantages and disadvantages of alternative propulsion systems.
- 3 Review and summarise operational and maintenance requirements related to marine engineering systems.
- 4 Discuss and illustrate significant features of the main propulsion machinery, the machinery layout, and the auxiliary systems installed onboard.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination	2	3	4
Portfolio	1	3	4

Outline Syllabus

Marine Systems and Components;

Complete reverse engineering design process of marine auxiliary systems and components.

Generate component images using appropriate software for illustration of system operating philosophy.

Marine Engineering Knowledge;

Types of main propulsion machinery and their application to different types of vessels.

Auxiliary machinery including boilers, steering gear, refrigeration, emissions control, sewage treatment.

Auxiliary systems including sea water/freshwater cooling, fuel oil, lubricating oil, fire extinguishing and detection.

Materials and corrosion protection.

System Design; P&ID's of a typical marine fluid system, pump specification and selection.

Marine System Software Simulation; Re-emphasise learning outcomes and the design process of main propulsion and auxiliary systems, with the aid of the engine simulator resource, underlining system operation and layout aspects.

Learning Activities

A combination of lectures and tutorials supported by a ship visit.

Notes

This module will provide a good grounding for those students wishing to pursue a career in the following marine related disciplines or industries: Marine Engineering Operations, Marine Engineering Design, Marine Superintendence, Surveying and Shipbuilding.