Liverpool John Moores University

Title: STRUCTURAL ANALYSIS AND DESIGN

Status: Definitive

Code: **5123BEUG** (117993)

Version Start Date: 01-08-2021

Owning School/Faculty: Civil Engineering and Built Environment Teaching School/Faculty: Civil Engineering and Built Environment

Team	Leader
Denise Lee	Υ
Hassan Al Nageim	
Felicite Ruddock	

Academic Credit Total

Level: FHEQ5 Value: 24 Delivered 105

Hours:

Total Private

Learning 240 Study: 135

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	48	
Practical	6	
Tutorial	48	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70	3
Report	AS2	Lab Reports and Analysis	15	
Technology	AS3	Structural Design & Drawing	15	

Aims

To introduce the analysis of statically indeterminate structures and the analysis of the plastic behaviour of steel structures.

To design and detail structural elements in reinforced concrete and structural

Learning Outcomes

After completing the module the student should be able to:

- Analyse indeterminate beams and rectangular portal frames using moment distribution.
- 2 Evaluate deflection in beams and frames.
- 3 Analyse steel beams and frames behaving plastically.
- 4 Analyse columns subjected to axial load, transverse load and moments.
- 5 Design and detail flexural and compression elements in reinforced concrete.
- 6 Design and detail continuous flanged beams in reinforced concrete.
- 7 Design and detail flexural and compression elements in structural steel.
- 8 Design connections between steel elements.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAMINATION 1 2 4 5 7 8

LAB REPORTS & 3

ANALYSIS

STRUCTURAL DESIGN 6

& DRAWING

Outline Syllabus

Analysis of beams:

Statically indeterminate beams, deflection, composite (flitch) beams.

Analysis of frames:

Moment distribution, plastic analysis, virtual work.

Analysis of columns

Reinforced concrete design and detailing to EC2 of rectangular and flanged beams, slabs, pad foundations and stocky columns.

Structural steelwork design and detailing to EC3 of laterally restrained and unrestrained beams, columns and connections.

Learning Activities

Lectures, tutorials, problem solving sessions, laboratory practical work, use of specialist computer software.

Notes

This module expands the student's experience of structural behavior and design to include the analysis of statically indeterminate structures and to introduce the

analysis of structures allowed to deform plastically. Structural elements and frames are then designed and detailed in reinforced concrete and structural steelwork using Eurocodes 2 & 3.