Liverpool John Moores University

Title: SUSTAINABLE DESIGN AND CONSTRUCTION

Status: Definitive

Code: **5125BEUG** (118158)

Version Start Date: 01-08-2019

Owning School/Faculty: Built Environment Built Environment Built Environment

Team	Leader
Sian Dunne	Υ
Andy Shaw	
Laurence Brady	

Academic Credit Total

Level: FHEQ5 Value: 24 Delivered 63

Hours:

Total Private

Learning 240 Study: 177

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	24
Practical	12
Tutorial	24

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	50	3
Report	AS2	Report	50	

Aims

To enable the student to fully appreciate the aspects of sustainability that apply to design, new build and refurbishment within the Construction Industry.

To look in detail at aspects of sustainable design and construction through material selection and thermal modeling of buildings.

Learning Outcomes

After completing the module the student should be able to:

- Develop a sustainable strategy for a new or refurbish construction projects and set realistic and measurable targets that, where applicable, would also involve other professional disciplines.
- 2 Specify environmental parameters for lighting, acoustics, temperature and humidity
- 3 Identify applicable statutory and non-statutory drivers for sustainability
- 4 Evaluate the implications of material specification and built form on indoor thermal conditions and building energy performance
- Resolve particular energy/thermal condition problem for specific situations and provide contextual background to these situations
- 6 Use modeling software to examine energy performance of a room or building
- 7 Evaluate the effectiveness and suitability of low and zero carbon technologies
- 8 Resolve particular low and zero carbon problem for specific situations and provide contextual background to these situations

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAMINATION	3	5	7	8
REPORT	1	2	4	6

Outline Syllabus

Sustainability, BREEAM, Renewable energy technologies, sustainable building design, sustainable building materials, SAP2009 calculations, SBEM, commerciality of proposals, costings, added value, project brief development, sustainable buildings case studies, energy assessment,

Learning Activities

Lectures, Tutorials, IT workshops, practicals

Notes

This module will give the students an understanding of the sustainable issues facing the construction industry and allow them to apply aspects of environmental practice and technology through the design and construction process.