

# **3D Computer Graphics**

# **Module Information**

2022.01, Approved

## **Summary Information**

| Module Code         | 5208COMP                         |
|---------------------|----------------------------------|
| Formal Module Title | 3D Computer Graphics             |
| Owning School       | Computer Science and Mathematics |
| Career              | Undergraduate                    |
| Credits             | 20                               |
| Academic level      | FHEQ Level 5                     |
| Grading Schema      | 40                               |

#### Teaching Responsibility

| LJMU Schools involved in Delivery |  |
|-----------------------------------|--|
| Computer Science and Mathematics  |  |

## **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 22    |
| Workshop             | 22    |

## Module Offering(s)

| Display Name | Location | Start Month | Duration Number Duration Unit |
|--------------|----------|-------------|-------------------------------|
| SEP-CTY      | СТҮ      | September   | 12 Weeks                      |

## Aims and Outcomes

| Aims | To provide mathematical knowledge essential in complex 3D graphics and animation. To explain the key principles of 3D computer graphics. To develop skills in 3D computer graphics operations using modern 3D graphical API. To explain GPU graphics programming using shaders. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                 |

#### After completing the module the student should be able to:

#### Learning Outcomes

| Code | Number | Description                                                                                                                                                      |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MLO1 | 1      | Explain the real-time programmable rendering pipeline and the mathematical concepts underpinning each stage.                                                     |
| MLO2 | 2      | Assemble a 3D scene using polygonal mesh techniques.                                                                                                             |
| MLO3 | 3      | Implement complex 3D affine transformations and procedural algorithms for transform control in a real-time GPU-accelerated interactive 3D graphical application. |
| MLO4 | 4      | Compare and contrast the key conceptual differences and algorithmic processes between offline rendering and real-time rendering.                                 |
| MLO5 | 5      | Render complex 3D geometry using both local and physically based global illumination schemes in real-time using the programmable rendering pipeline.             |

## **Module Content**

| Outline Syllabus       | Mathematics principles:-Solving linear inequalitiesDiscrete sampling and interpolation<br>Revision on Vectors and Matrices: Mathematical and geometric definitions of vector, Vectors<br>vs. Points, Vector additions, subtraction, and multiplications, Vector dot product and cross<br>product, unit vector, Transforms and Matrices. Applying these concepts in 3D space3D<br>Coordinate space: Euclidean Geometry, 3D Cartesian Coordinates. Affine and coordinate<br>system transformationsTheory of rotation in 3D and its implementation: Euler Angle, Tait-<br>Bryan, Axis-Angle and Quaternion (including Complex Numbers).Introduction to<br>Programmable Graphics Pipeline using GPU ShadersPipeline StagesLocal, World, View<br>and Screen SpacesSimple triangle rasterization.Polygonal representation-Polygon Meshes:<br>Vertices, Edge and Faces, Graphics primitives, Indexed triangle mesh, surface normal. Buffer<br>formations and TopologiesDCC (Digital Content Creation) Content Importing and Data<br>Parsing for Polygonal Meshes and Texture/Buffer Resources.Texture mapping, including-<br>Diffuse, Specular and Normal mappingMulti-TexturingMagnification (point sampling, linear<br>sampling)-Minification and MIP Mapping-Texture as a Resource, RenderTargets and RTT<br>Texture mapping implementation using shaders.Illumination and shading model including,-<br>Basic radiometry-Rendering in nature: Introduction to Physically-Based LightingLocal<br>Illumination vs. Global Illumination – Indirect vs. Direct LightingSimple BRDF-based lighting<br>techniquesPhong Illumination Model: Ambient, Diffuse and specular lighting-Light sources:<br>Direct, Point and Spot light sources.Normal vector calculationsLocal illumination<br>implementationSpecifying output window, window aspect ratio, view frustum, field of view,<br>and zoomView Matrix-Orthographic and Perspective ProjectionProjection matrix.Pipeline<br>Control:-Data Semantics, State Objects, Blend EquationsSampling and anti-aliasing3D<br>Animation Techniques:-Euler, Axis-Angle, Quaternion-Key-FrameLERP and SLERP |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Overview        | This module builds on your knowledge of 2D graphics and furthers your knowledge in 3D computer graphics, from the underlying mathematical principles to your application in the development of 3D computer games. The module uses a modern GPU-driven graphics API to demonstrate how complex 3D scenes can be constructed using a wide range of 3D graphical techniques. You will be taught about the programmable pipeline, including shader implementations of lighting and texture calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Additional Information | This module builds on the students' knowledge of 2D graphics and furthers their knowledge in 3D computer graphics, from the underlying mathematical principles to their application in the development of 3D computer games. The module uses a modern GPU-driven graphics API to demonstrate how complex 3D scenes can be constructed using a wide range of 3D graphical techniques. Students will be taught about the programmable pipeline, including shader implementations of lighting and texture calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Assessments

| Assignment Category | Assessment Name         | Weight | Exam/Test Length (hours) | Module Learning<br>Outcome Mapping |
|---------------------|-------------------------|--------|--------------------------|------------------------------------|
| Technology          | Shader & Procedural app | 100    | 0                        | MLO1, MLO2,<br>MLO3, MLO4,<br>MLO5 |

## **Module Contacts**

#### Module Leader

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
| Sud Sudirman | Yes                      | N/A       |

#### Partner Module Team

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
|              |                          |           |