

Module Proforma

Approved, 2022.02

Summary Information

Module Code	5304CIV
Formal Module Title	Water Engineering
Owning School	Civil Engineering and Built Environment
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 5
Grading Schema	40

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Clare Harris	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings
Khalid Hashim	Yes	N/A
Manolia Andredaki	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery	
Civil Engineering and Built Environment	

Learning Methods

Learning Method Type	Hours
Lecture	44
Practical	6
Tutorial	11

Module Offering(s)

Offering Code	Location	Start Month	Duration
JAN-CTY	CTY	January	12 Weeks

Aims and Outcomes

	•			_
л		n	n	7-
Α		ш		

To introduce and then consolidate students' knowledge of the fundamental principles of engineering hydrology applied to civil engineering problems and provide an understanding of some of the key environmental and social problems with which they must deal within the context of global change and sustainable engineering. To present open channel flow concepts and provide students with the ability to perform and assess a range of hydraulic computations relating to open channel flow commonly used in civil engineering.

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Analyse free surface flow problems using friction, energy and momentum considerations and predict the behaviour of sub-critical and super- critical open channel flows.
MLO2	Assess, interpret and quantify hydrological data including impact of climate change on the hydrological cycle.
MLO3	Perform and present engineering calculations, exercising technical judgement and making associated decisions.
MLO4	Apply relevant practical and laboratory skills to test the theoretical concepts encountered in the module and present appropriate findings of experimental work.

Module Content

Outline Syllabus

Open channel flow:Laminar and turbulent flow in open channels, principles of uniform flow, Chézy and Manning equations, development of friction equations, channel cross-sections, development of energy concepts & specific energy, critical flow considerations, normal depth and critical depth, applications of the energy principle, measurement structures, specific force considerations, analysis of hydraulic jump.Engineering hydrology:The hydrological cycle, climate change effects, precipitation, initial losses, infiltration, percolation, evapotranspiration, surface runoff, groundwater flow, rainfall and runoff catchment characteristics, impacts of urbanisation, hydrograph analysis, unit hydrograph theory.

Module Overview

Additional Information

Knowledge of water engineering is essential for good practice of civil and environmental engineering. This module provides background material on open channel hydraulics and engineering hydrology that serve as a sound base for other relevant civil and environmental modules and for future professional practice. The material that will be taught includes a balance between theoretical principles and their application to real problems in hydraulic engineering. When studying open channel flows, students should gain an appreciation of the different types of flow that may occur in natural and engineered systems. The module will aid students' appreciation of hydrological processes and will demonstrate how to approach practical problems in applied hydrology.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Centralised Exam	Examination	70	2	MLO2, MLO1, MLO3
Report	Report	30	0	MLO1, MLO4, MLO3