

Control System Design and Analysis

Module Information

2022.01, Approved

Summary Information

Module Code	5305CIT
Formal Module Title	Control System Design and Analysis
Owning School	Engineering
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 5
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery
LJMU Partner Taught

Partner Teaching Institution

Institution Name	
Changshu Institute of Technology	

Learning Methods

Learning Method Type	Hours
Lecture	40
Practical	8

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-PAR	PAR	September	12 Weeks

Aims and Outcomes

Aims	To develop an understanding of components and the principles of control systems, basic design and analysis techniques, and practice some control applications toindustrial systems.

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Demonstrate an understanding of the basic concepts of the automatic control system, the feedback control system and the control mode.
MLO2	2	Demonstrate the ability to establish the transfer functions of the control system with typical links and develop a mathematical model and analyse the system dynamic performance index.
MLO3	3	Demonstrate an understanding of the basic concept of frequency characteristics, and the relationship between frequency characteristics and system stabilities.
MLO4	4	Demonstrate the use the simulation software to analyse the control system and adjust the system performance according to the analysis results.
MLO5	5	Simulate control systems with appropriate software and assess system performance.
MLO6	6	Demonstrate understanding of system components and controller realisation.

Module Content

Outline Syllabus	Introduction: control system structure including sensors, controllers, actuators and plants.Matlab/Simulink Modelling & Simulation: introduce transfer function models for different plants, how to use Matlab/Simulink to model a dynamic system, how to simulate a control system with Matlab/Simulink for system analysis and performance assessment.Integration algorithms, State Space representation Time response analysis: characteristics for first order and second order systems, response to step and ramp input.Controller design: design specification in time domain, functions of P, I and D control, empirical controller parameter setting method.Industrial control: implementation of PID controllers, proportional and derivative kicks, integral controller wind-up and anti-wind-up method.Control system hardware design.Block diagram analysis.Stability: concept of absolute and relative stability, stability analysis.Computer packages will be used to gain experience in applying and simulating techniques.
Module Overview	
Additional Information	The modules develops an understanding of the modelling, application, design and analysis of control systems with Matlab/Simulink.Reports are 2500 maximum word count.Examinations are 2 hour duration.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Exam	Exam	60	2	MLO1, MLO2, MLO3, MLO4, MLO5, MLO6
Technology	Programming	40	0	MLO2, MLO5

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Barry Gomm	Yes	N/A

Partner Module Team

act Name	Applies to all offerings	Offerings	
----------	--------------------------	-----------	--