

Approved, 2022.02

Summary Information

Module Code	5305ELE			
Formal Module Title	Control System Design and Analysis			
Owning School	Engineering			
Career	Undergraduate			
Credits	20			
Academic level	FHEQ Level 5			
Grading Schema	40			

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Qian Zhang	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings	
Partner Module Team			

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery		
Engineering		

Learning Methods

Learning Method Type	Hours
----------------------	-------

Lecture	22
Practical	11
Tutorial	11

Module Offering(s)

Offering Code	Location	Start Month	Duration
JAN-CTY	CTY	January	12 Weeks

Aims and Outcomes

Aim	C	To develop an understanding of components and the principles of control systems, basic design and
AIIII	5	analysis techniques, and practice some control applications to industrial systems.

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Demonstrate an understanding of the basic concepts of dynamic system response and closed loop control.
MLO2	Develop models for simple dynamic plant with appropriate software.
MLO3	Demonstrate ability to design controllers and analyse system stability.
MLO4	Simulate control systems with appropriate software and assess system performance.
MLO5	Demonstrate understanding of system components and controller realisation.

Module Content

Outline Syllabus

Introduction: control system structure including sensors, controllers, actuators and plants.Matlab/SimulinkModelling & Simulation: introduce transfer function models for different plants, how to use Matlab/Simulink to model a dynamic system, how to simulate a control system with Matlab/Simulink for system analysis and performance assessment.Integration algorithms, State Space representationTime response analysis: characteristics for first order and second order systems, response to step and ramp input.Controller design: design specification in time domain, functions of P, I and D control, empirical controller parameter setting method.Industrial control: implementation of PID controllers, proportional and derivative kicks, integral controller wind-up and anti-wind-up method.Control system hardware design.Block diagram analysis.Stability: concept of absolute and relative stability, stability analysis.Computer packages will be used to gain experience in applying and simulating techniques.

Module Overview

This module aims to develop your understanding of the modelling, application, design and analysis of control systems with Matlab/Simulin. You will learn to demonstrate an understanding of the basic concepts of dynamic system response and closed loop control, alongside the developing ability to design controllers and analyse system stability.

Additional Information

This level 5 module develops an understanding of the modelling, application, design and analysis of control systems with Matlab/Simulink.Where this module is part of a Degree Apprenticeship programme, the skills learning outcomes is S9

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Centralised Exam	Exam	60	2	MLO5, MLO3, MLO1, MLO2
Report	Report	40	0	MLO2, MLO4