

Applied Instrumentation

Module Information

2022.01, Approved

Summary Information

Module Code	5312ELE
Formal Module Title	Applied Instrumentation
Owning School	Engineering
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 5
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery	
Engineering	

Learning Methods

Learning Method Type	Hours
Lecture	24
Tutorial	48

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-CTY	СТҮ	September	12 Weeks

Aims and Outcomes

Aims	To introduce the students to a graphical based programming language that enables the user to program via a CAD style environment enabling them to create virtualinstruments as a base for data acquisition and instrument control.
------	--

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Use LabView to design a simple control and instrumentation system simulation
MLO2	2	Use LabView designs as subVI's in more complicated designs
MLO3	3	Control external hardware using LabView
MLO4	4	Perform data collection, analysis and storage.

Module Content

Outline Syllabus	LabVIEW environmentHow LabVIEW differs from traditional programming languages.Define a VI, how to open, create and save VI's and templates.Front panelsHow they function and what are they used for.What components make up the front panel.Block diagramsHow they differ to front panels.How they are constructed.Data FlowWhat is the dataflow paradigm.LoopsDifferent types of loops in LabVIEW.Controlling execution using loops.Shift registersWhat are the functions of shift registers.How and when to use them.Case StructuresHow to construct a case structure.How they differ from other structures in LabVIEW.Visual Displays: Charts & GraphsDifference between charts and graphs and how to select and use themDisplaying several signals in the same chart.Using Built in FunctionsPerforming data analysis, for example FFT using built in functionsStrings & File I/OString operations and conversions.Using files to input data into a LabVIEW application.Saving data from a LabVIEW program.Connecting external hardwareConnecting external instruments and logging dataConnecting simple I/O boards		
Module Overview	The aim of the module is to introduce you to a graphical based programming language that enables the user to program via a CAD style environment enabling them to create virtual instruments as a base for data acquisition and instrument control.		
Additional Information	This module introduces students to a graphical based programming language thatenables the user to program via a CAD style environment enabling them to createvirtual instruments as a base for data acquisition and instrument control. Where this module is part of a Degree Apprenticeship programme, the knowledge learning outcomes is K5.		

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Technology	Design Assignment 1	25	0	MLO1
Report	Mini Project	75	0	MLO2, MLO3, MLO4

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Dingli Yu	Yes	N/A

Partner Module Team

Page 3 of 3